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Abstract: The sequence classification is considered as one of the important data mining tasks. It has a broad range of 

real-world applications such as bioinformatics, medicine, finance, and abnormal detection. In the literature, several 

algorithms have been proposed for sequence classification from different aspects. Existing algorithms can be partitioned into 

three types feature-based, distance-based, and model-based algorithms.  In particular, the feature-based algorithms are 

widely applied for the sequence classification in the literature. In this paper, we propose a new event sequence classification 

method that based on the idea of the compact big sequence (BigSeq). Our classification method called CBigSeq. It is feature-

based method where the features are the used Big Sequences in our model. To evaluate CBigSeq, we compare it with the 

feature-based method, SeqDT (the state-of-the-art sequence classification algorithm). Our performance study shows that 

CBigSeq can achieve better performance than SeqDT with respect to classification accuracy, total response time, and count 

of utilized patterns. 

 
Keywords: Event Sequences, Sequence Classification, Big Sequence, Classification Accuracy

1. INTRODUCTION 
The sequence classification is considered an 

essential data mining task. The sequence classification 
problem is defined as learning a sequence model to get 
a class label for the new sequence [1]. Sequence 
classification has many applications such as 
bioinformatics, health sciences, medicine, finance, and 
abnormal detection. For example, in finance, we 
classify sequence data in a bank to combat money 
laundering [2]. In bioinformatics, protein sequences are 
added in large repositories daily. To classify these 
sequences, we search for sequences that have a similar 
function. When novel sequence added to these 
repositories, we compared it with current sequences to 
predict the category of the novel sequence. In 
information retrieval, we want to classify the 
documents into distinct topic categories [3]. 

 
There are many challenges should be copied to 

develop a new algorithms for sequence classification. 
Now we discuss these challenges. In the first challenge, 
many algorithms take the input sequence data as a 
vector of features. Unfortunately, non explicit features 
in sequence data are existed. In the second challenge, 
the feature selection step is not trivial task. Finally, in 

the third challenge, due to the lack of explicit features, 
we cannot construct an interpretable models. 

 

In the literature, several algorithms have been 
proposed for sequence classification to address the 
previous challenges. Existing algorithms can be 
partitioned into three types (feature-based, distance-
based, and model-based algorithms). In this paper, we 
focus on the feature-based algorithms. In feature-based 
algorithms, the input data sequence is represented by a 
vector of features. Thereafter, the classification 
methods such as Naive Bayes, k-nearest neighbours, 
decision trees can be used. More details about the 
feature-based algorithms are listed in Section 3. 

 
In this paper, we propose a novel algorithm called 

CBigSeq for event sequence Classification that based 
on our big sequence method (BigSeq) [4]. First, to 
construct our model, we divide the training sequences 
into subsets based on the class label. In other words, if 
we have m distinct class label then we divide the 
training sequences into m subsets. Thereafter, we 
construct BigSeq for each subset of sequences. Now, 
we have m big sequences (BigSeqs) which will 
represent our model. Finally, we classify the new coming 

sequence based on the current m BigSeqs. Our 
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experiments on three real datasets show that CBigSeq 
has the best performance in most cases compared to the 
state-of-the-art algorithm, SeqDT [5], in terms of 
classification accuracy, total response time, and count 
of utilized patterns. 

 
Organization. This paper is organized as follows. 

Section 2 reports the preliminary concepts. Section 3 
presents the related work. Section 4 discusses the 
proposed algorithm. Section 5 lists the experimental 
results. Finally, Section 6 concludes the paper. 

2. PRELIMINARY CONCEPTS 

Let σ be a set of n distinct events. Event sequence V = 

< v1, v2, ..., vh > over σ is ordered list such that vi ∈ 
σ. Event sequence U = {u1, u2, ..., ug} is subsequence 

of the event sequence V if there are g integers (j1, j2,..., 

jg) such that 1 ≤ j1 < j2 < ... < jg ≤ h and u1 = vj1 , u2 = 

vj2 ,... ,ug = vjg . Event sequence with length h is called 

an h-sequence. Let C = {c1, c2, ..., cm} be the set of m 

distinct classes. A labelled sequence database D is a 

set of rows. Each row contains a sequence s and its 

class label ci. As an example, let we have Table 1. 

This table contains the labelled event sequence 

database D with C = {c1, c2}. The sequence S4 = CBC 

has class label c1 and it is subsequence of the 

sequence S2 = ACBC (S4 ⊑ S2). Also we can said S2 is 

supersequence of S4. The set of all sequences in D 

which have the same class label ck is denoted by Dk. 

As an example, we have D1 = {S1, S2, S3, S4} and D2 = 

{S5, S6, S7, S8}. 

 
Table 1. Labeled Event Sequence Database, D 

 

 
 

 
     For sequence classification, D is divided into two 

subsets. The first set is the training dataset, Dtrain, to 

build model (Table 2) and the second set is the test 

dataset, Dtest, to test the model in terms of accuracy 

(Table 3). The set of all sequences in Dtrain which have 

the same class label ck is denoted by Dk
train. As an 

example, we have D1
train = {S1, S2, S3} and D2

train = {S5, S6, 

S7}. 

 
Table 2. The Training Dataset of D, Dtrain 

 
 

Table 3. The Test Dataset of D, Dtest 

 
 

Problem Definition: Given the training sequence 

dataset Dtrain and a new sequence with unknown class 

label Snew. The objective is to construct an efficient 

classifier (model) to classify Snew in which the 

classification accuracy is high, the total response time 

is responsible, and the count of utilized patterns is 

small as possible. 

3. RELATED WORK 

The sequence classification is considered an 

essential data mining task. In the literature, several 

algorithms have been proposed for this problem. 

Recall, based on the used strategy for designing the 

model (classifier), current algorithms of sequence 

classification can be partitioned into three types as 

follows. The first type is the feature-based algorithms, 

the second type is the distance-based algorithms, and 

finally, the third type is the model-based algorithms. 

In this paper, we focus in the feature-based 

algorithms. More details about them are listed as 

follows.  

 

In feature-based algorithms, each sequence is 

converted to a vector therefore the current algorithms 

of vector data classification methods will be used such 

as Naive Bayes, k-nearest neighbours, decision trees, 

hidden Markov models, support vector machines, etc. 

[6].  
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To classify sequences, the authors of [7] used the 

sequential patterns with Naive Bayes classification. 

They proposed the FeatureMine algorithm (called 

BayesFM) to efficiently construct the features from 

the sequence dataset. The main disadvantage of this 

method, in large feature space, the algorithm could not 

effectively construct the discriminative features. The 

Classify-By-Sequence algorithm (CBS) [8] was 

proposed to classify large sequences. This algorithm 

mines classifiable sequential patterns (CSPs) from the 

sequences. Thereafter, based on a scoring function, it 

assign a score to the new object for each class. 

Authors of [9] proposed a direct sequential pattern 

algorithm (BIDE-Discriminative) which uses class 

information for direct mining of predictive sequential 

patterns. 

 

SeqDT [5] is a new feature-based classification 

algorithm which is a tree-based sequence. This 

algorithm. It constructs a decision tree over the feature 

space of all subsequences on the training set. In this 

algorithm, two data mining tasks are combined 

namely, sequential pattern mining and decision tree. 

In other words, it uses the methods of sequential 

pattern mining to mine features for the tree-based 

sequence classification. There are many disadvantages 

of SeqDT as follows. Firstly, SeqDT consumes a lot 

of time because it is two-phases procedure in which 

the feature construction and decision tree construction 

are two consequent phases. Secondly, many 

parameters are determined as input for SeqDT such as 

g (gap constraint), d (tree depth), maxL (maximum 

pattern length), minS (minimum value of decreased 

impurity generated by segmentation), threshold ϵ 

(maximum value of Gini index in each node), and 

minN (minimum number of sequences in each node). 

More details about these parameters are listed in [5]. 

Unfortunately, setting the values of these parameters 

is not simple task since each application domain may 

need a specific setting. In contrast, as we will see our 

proposed efficient method is a free-parameter method. 

4. EVENT SEQUENCE CLASSIFICATION 

USING BIGSEQ 

First, we discuss the construction of Big Sequence 

(BigSeq) as follows. The BigSeq method was 

proposed in our previous paper [4] to summarize the 

event sequence database. The main idea of BigSeq is 

to merge all sequences into compact big sequence. 

The construction of BigSeq is based on two 

definitions (the longest common subsequence and the 

novel compatible event set). We review the 

construction of BigSeq using the following running 

example.  

 

Example 4.1. Given the labeled event sequence 

dataset Dtrain = D1
train ∪ D2

train  in Table 2. To construct 

BigSeq according to D1
train = {S1, S2, S3} (Recall, all 

sequences in Di
train have class label equals to ci). First, 

we randomly select any sequence S ∈ D1
train as initial 

value of BigSeq. Suppose S = S1 then the initial 

BigSeq is S1 = ABCC. After that, for each remaining 

sequence S′ ∈ D1
train − S1, we compute LCS(S′, 

BigSeq) and store every remaining event e where e ∈ 

S′ and e ∉ LCS(S′, BigSeq). For instance, the longest 

common subsequences LCS(S2, BigSeq) and LCS(S3, 

BigSeq) are ACC and CC respectively. Also, for the 

sequences S2 and S3, the set of remaining events are 

{B} and {B} respectively. Based on the remaining 

events of all remaining sequences, we compute the 

compatible event sets (core). Here, in this example, 

we have only one compatible event set core1, i.e. core 

= {core1} = {{B,B}}. Thereafter, we compute the 

representative event, erep, for core1 and insert it in 

BigSeq according to the expected range of positions. 

Here, erep is the event B. As result, the final Big 

Sequence of D1
train, BigSeq(D1

train), is ABCBC. With 

the same steps, we can find the final Big Sequence 

of D2
train, BigSeq(D2

train). We have BigSeq(D2
train) = 

ABCBA. For more details about the compatible 

event sets, the expected range of positions, and 

the construction of BigSeq, please read our 

previous paper [4]. 

 
    Before the discussion of sequence classification 

using BigSeq, we illustrate how to query BigSeq. 

 

4.1. Querying BigSeq 

To check that a given subsequence s belongs to a 

sequence S (S ∈ D) or not, we can do this by checking 

the Big sequence of D (BigSeq(D)) againt the 

subsequence s with respect to the next two theorems. 

 

Theorem 4.1 Given event sequence database D, 

its Big Sequence BigSeq(D), and subsequence s. 

If s ⋢ BigSeq(D) then s ⋢ S ∀ S ∈ D. 
 

Example 4.2 Given the training dataset D1
train in Table 

2, its Big Sequence BigSeq(D1
train),  = ABCBC, and the 
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subsequence s = BBB. Based on Theorem 4.1, we 

have s = BBB ⋢ ABCBC = BigSeq(D1
train),   then s ⋢S 

∀ S ∈ D1
train. 

 

Theorem 4.2 Given event sequence database D, 

its Big Sequence BigSeq(D), and subsequence s. 

If s ⊑ BigSeq(D) then either s ⊑ S where S ∈ D or 

s ⋢S ∀ S ∈ D.   
 

Example 4.3 Given the training dataset D1
train in Table 

2, its Big Sequence BigSeq(D1
train),  = ABCBC, and 

the subsequence s = ABC. Based on Theorem 4.2, 

we have s = ABC ⊑ ABCBC = BigSeq(D1
train) with s = 

ABC ⊑ ABC = S1 and s = ABC ⊑ ACBC = S2. In other 

hand, if we have another subsequence s′ = ABB ⊑ 

ABCBC = BigSeq(D1
train) but s′ ⋢ S ∀ S ∈ D1

train. 

 

    If the subsequence s ⋢ BigSeq(D) then we sure 

that s ⋢ S for each S ∈ D (Theorem 4.1). In the other 

hand, if s ⊑ BigSeq(D) then either s ⊑ S where S ∈ D 

or s ⋢ S ∀ S ∈ D (Theorem 4.2). In this case to prove 

that s ⊑ S where S ∈ D or not, we can check the bit-

vectors of s event’s in BigSeq(D) by performing the 

Anding operation on the corresponding bits in these 

bit-vectors. If the result contains one bit equals to one 

then s ⊑ S where S ∈ D otherwise s ⋢ S ∀ S ∈ D. See 

next example for more details. 

 

Example 4.4 Given the training dataset D1
train in Table 

2, its Big Sequence BigSeq(D1
train),  = ABCBC, and the 

two subsequences s = ABC and s′ = ABB. 

    For the subsequence s = ABC, we have s ⊑ 

BigSeq(D1
train) and it has three occurrences in 

BigSeq(D1
train) with positions {1, 2, 3}, {1, 2, 5}, and 

{1, 4, 5}. Next we separately discuss each occurrence. 

 

   1- For the first occurrence, we perform the Anding 

operation on bit-vectors that fall on positions 1, 2, 

and 3 in BigSeq(D1
train). The output is 00000011 

& 00000001 & 00000111 = 00000001. The output 

bit-vector has one at position 1 (i.e. it is not 

NULL). This means that s is contained in the 

sequence, S1 (s ⊑ S1). 

 

  2- For the second occurrence, we perform the 

Anding operation on bit-vectors that fall on 

positions 1, 2, and 5 in BigSeq(D1
train). The output 

is 00000011 & 00000001 & 00000111 = 

00000001. The output bit-vector has one at 

position 1. This means that s is contained in the 

sequence, S1 (s ⊑ S1). From the first and the 

second occurrences of s in BigSeq(D1
train), we 

have also two occurrences of s in the sequence S1 

which are {1, 2, 3} and {1, 2, 4}. 

 

  3- For the third occurrence, we perform the Anding 

operation on bit-vectors that fall on positions 1, 4, 

and 5 in BigSeq(D1
train). The output is 00000011 

& 00000110 & 00000111 = 00000010. The output 

bit-vector has one at position 2. This means that s 

is contained in the sequence, S2 (s ⊑ S2). 

 

   Note that from the first and the second occurrences 

of s in BigSeq(D1
train), we have s ⊑ S1. Therefore, s 

has two occurrences in S1. But, from the third 

occurrence, s has only one occurrence in S2. 

 

 
Algorithm 1: Querying BigSeq(D) 

Input: The corresponding BigSeq(D) with bit vectors 

sets of D and the query subsequence sq. 

Output: W ⊆ D such that sq ⊑ S for each S ∈ W 

otherwise NULL. 

1. if sq ⋢ BigSeq(D) then   // Theorem 4.1 

2.     return NULL 

3. end if 

4. else     // Theorem 4.2 

5.      Find the set of all occurrences of sq in BigSeq(D), 

O(sq). 

6.      for each occurrence o ∈ O(sq) do 

7.          Suppose p1, p2, ..., p|sq| be the positions of o in 

BigSeq(D). 
8.      Compute B_output = B(ep1) & B(ep2) & ... &  

B(ep|sq|)    // epi is the event e at position pi in 

BigSeq(D). 
9.         for each Bi ∈ B_output do 

10.           for j = 1 to 8 

11.               if Bi [ j ] = 1 

12.                 W = W ∪ S8×(i−1)+j 

13.               end if 

14.           end for 

15.       end for 

16.   end for 

17.   return W 

 

     For the subsequence s′ = ABB, we have s′ ⊑ 

BigSeq(D1
train) and s′ has only one occurrence in 

BigSeq(D1
train) with position {1, 2, 4}. Therefore, we 

perform the Anding operation on bit-vectors that fall 

on positions 1, 2, and 4 in BigSeq(D1
train). The output 

is 00000011 & 00000001 & 00000110 = 00000000. 
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The output bit-vector has no ones (i.e. it is NULL). 

This means that s′ ⋢ S ∀ S ∈ D and at the same time, 

we have s′ ⊑ BigSeq(D1
train). 

 

     Algorithm 1 outlines the process of querying 

BigSeq(D). The input of this algorithm is the big 

sequence of D, BigSeq(D), and the query 

subsequence sq while the output is the set of sequences 

in D that contains sq denoted as W. Lines 1-2 apply 

Theorem 4.1 that is if sq ⋢ BigSeq(D) then returns 

NULL. Lines 4-16 apply Theorem 4.2 as follows. 

First, we find the set of all occurrences of sq in 

BigSeq(D).  denoted as O(sq). Second, for each 

occurrence o = {p1, p2, ..., p|sq|} in O(sq), we Anding 

the bit vectors of the events ep1 , ep2 , ..., ep|sq| in 

BigSeq(D), where epi is the event e at position pi. We 

denote the output of the Anding operation as 

B_output. Note that B_output is a set of bit-vectors, 

B_output = {B1,B2, ...,Bm}, where the length of Bi is 8 

bits and m = D/8. Finally, for each block Bi ∈ 

B_output, if there exist any bit in any Bi equals to 1, 

we add its corresponding sequence to W. 

 

4.2. Classification Method 

    In this section, we discuss the event sequence 

classification using BigSeq method. Recall, for event 

sequence classification, D is divided into two subsets. 

The first set is the training set Dtrain (to build the 

model) and the second set is the test set Dtest (to test 

the model in terms of accuracy). To build the 

proposed model using BigSeq, we divide Dtrain into m 

subsets where m is the number of classes in the dataset 

(m = |C|) such that each subset will have the same 

class label. For each subset Di
train (Note that each 

sequence S ∈ Di
train has class label ci such that i = 1, 

..., m), we construct its Big Sequence, BigSeq(Di
train). 

As a result, our model will be represented by m 

BigSeqs. Based on our model, to classify a new 

sequence Snew with unknown class label, we have two 

cases as follows. In the first case, if Snew is not 

subsequence of BigSeq(Di
train).  for all i = 1, ..., m 

(Theorem 4.1), we compute LCS(Snew, BigSeq(Di
train)) 

for each BigSeq(Di
train) in our model where i = 1, ..., 

m. Thereafter, we search for the maximum length of 

LCS among all BigSeqs. Suppose LCS(Snew, 

BigSeq(Dk
train))  has the maximum value then we label 

Snew by ck. In the second case, if there exist index k 

such that Snew is subsequence of BigSeq(Dk
train) then 

we simply label Snew by ck and we do not search for 

the occurrences of Snew in BigSeq(Dk
train)  to save a 

time. In Experimental Evaluation section, we test the 

performance of our classification method on real 

datasets with respect to classification accuracy, total 

response time, and count of utilized patterns.  

Algorithm 2 outlines the construction of our model 

and the classification of a new sequence Snew with 

unknown class label. 

 

 
Algorithm 2: Model Construction & Sequence Classification 

Input: The training dataset Dtrain and the new 

sequence Snew with unknow class label. 

Output: The class label of Snew 

 

1. Divide Dtrain into m subsets based on the class label  

ci  (Dtrain = Di
train) 

2. for each i = 1 to m do 

3.     Construct the Big Sequence BigSeq(Di
train)   

4.     Arr_W [i] = Querying(BigSeq(Di
train), Snew) // Call 

Algorithm 1 

5. end for 

6. if Arr_W [i] = NULL ∀ i = 1, ..., m // Theorem 4.1 

7.     for each i = 1 to m do 

8.         Compute LCSi = LCS(Snew, BigSeq(Di
train)) 

9.     end for 

10.   k = argmaxi=1…m LCSi
 

11.   Label Snew by ck 

12. end if 

13. else 

14.    Find the index k where Arr_W [k] ≠ NULL 

15.    Label the sequence Snew by ck 

 

5 EXPERIMENTAL EVALUATION 

      This section shows the results of experiments on 

three real datasets. We compare our proposed 

algorithm, CBigSeq, with SeqDT algorithm [5] (the 

state-of-the-art algorithm). Note that, we used SeqDT 

in our experiments beacuse it outperforms the four 

algorithms SEQL [10], MiSeRe [11], Sqn2Vec [12], 

and SCIP [13]. 
        

       CBigSeq was implemented in C++ with STL 

library and compiled with GNU GCC while the code 

of SeqDT was downloaded from 

https://github.com/ZiyaoWu/SeqDT. Experiments 

were run on laptop (Intel i3 2.4 GHz and 8G memory) 

running Linux. The three datasets are reported in the 

next section. 

https://github.com/ZiyaoWu/SeqDT
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Table 4. Summary Statistics of the Real Datasets used in Our 

Experiments 

 

5.1 Datasets 

      To evaluate our proposed algorithm, CBigSeq, we 

used three real datasets namely, Question [14], 

Poineer [9], and Gene [15]. These datasets are 

summarized in Table 4, where |D| is the number of 

event sequences, |E| represents the count of the events, 

min_L, max_L, avg_L, and #classes represent the 

minimum length, the maximum length, the average 

length, and the number of distinct classes of the event 

sequences respectively. Also, Table 5 reports URLs of 

the used datasets. 

 
Table 5. URLs of the Real datasets Used in Our Experiments 

 
 

5.2 Performance of CBigSeq against SeqDT 

CBigSeq algorithm is evaluated based on the 

following three criteria: 

1.  Accuracy: To measure the accuracy of our model. 

2. Total Response Time:  To measure the efficiency 

of CBigSeq. 

3. The Count of Utilized Patterns:  To show the count 

of utilized patterns for classification. 

5.2.1 Accuracy 

      In this section, we discuss the accuracy (%) of the 

two algorithms on the three datasets. For each dataset, 

we select a number of sequences for training and other 

number of sequences for testing as in Table 6. 

Table 6. Train and Test Sequences for each Dataset 

 
 

    Table 7 reports the accuracy (%) of the two 

algorithms. From this table, CBigSeq shows higher 

accuracy than SeqDT Question dataset whereas the 

opposite occurs on the Pioneer dataset. On Gene 

dataset, the two algorithms have the same accuracy 

(100%). 

 
Table 7. Accuracy (%) of the two algorithms (CBigSeq against 

SeqDT) 

 

    Figure 1 reports the scalability test (the number of 

training sequences) of CBigSeq against SeqDT in 

terms of accuracy. This scalability test was done on 

the Question dataset with 238 sequences for testing. 

From this Figure, CBigSeq algorithm shows a better 

accuracy when the number of train sequences are 

1000 and 1200. For example, with 1200 sequences for 

training, the accuracy of CBigSeq is 96.6% while the 

accuracy of SeqDT is 95.3%. On the other hand, 

SeqDT has a better accuracy when the number of train 

sequences are 900 and 1100. For example, with 900 

sequences for training, the accuracy of SeqDT is 

94.5% while the accuracy of CBigSeq is 94.1%. 

 

      Recall, many parameters are determined as input 

for SeqDT such as the two parameters g (the gap 

constraint) and d (the tree depth) whereas our 

proposed algorithm CBigSeq is free-parameters. 

Therefore, in the next experiment, we show the 

parameter sensitivity of SeqDT in terms of accuracy 

while our proposed algorithm, CBigSeq, is stable. 

This experiment was done on Question dataset with 

1200 sequences for training and 238 sequences for 

testing. We selected values for g and d as follows. The 

values of g are 1, 2, 3, 4, and 5 whereas the values of 

d are 2, 5, 7, 9, and 11. In Figure 2, for gap constraint 

(g), the accuracy of CBigSeq is stable and equals to 

96.6% while the accuracy of SeqDT is not stable and 

falls on the range from 93.69% to 95.37%. In Figure 

3, for tree depth (d), the accuracy of CBigSeq is also 

stable and equals to 96.6% while the accuracy of 

SeqDT is not stable and falls on the range from 

83.19% to 95.37%. 
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Figure 1.  Scalability Test (Accuracy) 

 

 

Figure 2.  Gap Constraint (Accuracy) 

 

Figure 3.  Tree Depth (Accuracy) 

5.2.2 Total Response Time 

In this experiment, the number of sequences for 

training and testing is the same as in the previous 

section (see Table 6). Table 8 reports the total 

response time (MSec) of the two algorithms on the 

three datasets. From this table, on Question dataset, 

CBigSeq outperforms SeqDT by three factors. On 

Pioneer dataset, the two algorithms have 

approximately the same time. While, on Gene dataset, 

SeqDT outperforms CBigSeq by more than two 

factors. 

 

Table 8. Total Response Time (MSec) of the two algorithms 

(CBigSeq against SeqDT) 

 

 

     Figure 4 reports the scalability test (the number of 

training sequences) of CBigSeq against SeqDT with 

respect to total response time (MSec). This scalability 

test was done on the Question dataset with 238 

sequences for testing. From this Figure, CBigSeq 

algorithm shows the best performance. In other words, 

BigSeq outperforms SeqDT by more than three 

factors. 

 

     Now, we test the parameter sensitivity of SeqDT in 

terms of total response time while the proposed 

algorithm, CBigSeq (free-parameters) is stable. This 

experiment was done on Question dataset with 1200 

sequences for training and 238 sequences for testing. 

As in previous section, we also used the two 

parameters g (the gap constraint) and d (the tree 

depth) with the same selected values. In Figure 5, for 

gap constraint (g), the total response time of CBigSeq 

is stable and equals to 343 MSec while the total 

response time of SeqDT is not stable and falls on the 

range from 1027 MSec to 1684 MSec. In other words, 

BigSeq outperforms SeqDT by more than five factors. 

In Figure 6, for tree depth (d), the total response time 

of 

CBigSeq is also stable and equals to 343 MSec while 

the total response time of SeqDT is not stable and falls 

on the range from 810 MSec to 1027 MSec. In other 

words, BigSeq outperforms SeqDT by more than three 

factors. 
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Figure 4.  Scalability Test (Total Response Time) 

 

 

Figure 5.  Gap Constraint (Total Response Time) 

 

Figure 6.  Tree Depth (Total Response Time) 

 

 

5.2.3 The Count of Utilized Patterns 

Table 9 shows the count of utilized patterns for 

classification by the two algorithms on the three 

datasets. Note that CBigSeq utilized only |C| patterns 

i.e. |C| BigSeqs (Recall, |C| is the number of classes in 

the running dataset) for all datasets. In the Question 

dataset, the count of utilized patterns of CBigSeq is 

smaller than SeqDT. This means that our proposed 

method constructs an efficient model for classification 

with only a small number of patterns. In the other two 

datasets, Pionner and Gene, the two algorithms 

CBigSeq and SeqDT construct their models by 

approximately the same count of utilized patterns. 

 
Table 9. The Count of Utilized Patterns of the two algorithms 

(CBigSeq against SeqDT) 

 

 
 

6 CONCLUSION 

In this paper, we focus on classification event 

sequence dataset. Existing algorithms of sequence 

classification are partitioned into three types (feature-

based, distance-based, and model-based algorithms). 

Here, we proposed a feature-based algorithm called 

CBigSeq. CBigSeq is based on the idea of compact 

big sequence (BigSeq). Our model contains a set of 

BigSeqs such that each BigSeq in our model 

represents a subset of training sequences that have the 

same class label. Via an extensive evaluation on three 

real datasets, we show that CBigSeq outperforms the 

state-of-the-art competitor, SeqDT, in most cases in 

terms of classification accuracy, total response time, 

and count of utilized patterns. 
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