
https://kjis.journals.ekb.eg/

Kafrelsheikh Journal of Information Sciences ISSN (Online): 2535-1478, ISSN (Print): 2537-0677 Volume 3, Issue 2, 2022, PP. 1–9

Classification Event Sequences via Compact Big
Sequence

Mosab Hassaan

Faculty of Science, Benha University, Egypt

E-mail: mosab.hassaan@fsc.bu.edu.eg

Abstract: The sequence classification is considered as one of the important data mining tasks. It has a broad range of

real-world applications such as bioinformatics, medicine, finance, and abnormal detection. In the literature, several

algorithms have been proposed for sequence classification from different aspects. Existing algorithms can be partitioned into

three types feature-based, distance-based, and model-based algorithms. In particular, the feature-based algorithms are

widely applied for the sequence classification in the literature. In this paper, we propose a new event sequence classification

method that based on the idea of the compact big sequence (BigSeq). Our classification method called CBigSeq. It is feature-

based method where the features are the used Big Sequences in our model. To evaluate CBigSeq, we compare it with the

feature-based method, SeqDT (the state-of-the-art sequence classification algorithm). Our performance study shows that

CBigSeq can achieve better performance than SeqDT with respect to classification accuracy, total response time, and count

of utilized patterns.

Keywords: Event Sequences, Sequence Classification, Big Sequence, Classification Accuracy

1. INTRODUCTION
The sequence classification is considered an

essential data mining task. The sequence classification
problem is defined as learning a sequence model to get
a class label for the new sequence [1]. Sequence
classification has many applications such as
bioinformatics, health sciences, medicine, finance, and
abnormal detection. For example, in finance, we
classify sequence data in a bank to combat money
laundering [2]. In bioinformatics, protein sequences are
added in large repositories daily. To classify these
sequences, we search for sequences that have a similar
function. When novel sequence added to these
repositories, we compared it with current sequences to
predict the category of the novel sequence. In
information retrieval, we want to classify the
documents into distinct topic categories [3].

There are many challenges should be copied to

develop a new algorithms for sequence classification.
Now we discuss these challenges. In the first challenge,
many algorithms take the input sequence data as a
vector of features. Unfortunately, non explicit features
in sequence data are existed. In the second challenge,
the feature selection step is not trivial task. Finally, in

the third challenge, due to the lack of explicit features,
we cannot construct an interpretable models.

In the literature, several algorithms have been
proposed for sequence classification to address the
previous challenges. Existing algorithms can be
partitioned into three types (feature-based, distance-
based, and model-based algorithms). In this paper, we
focus on the feature-based algorithms. In feature-based
algorithms, the input data sequence is represented by a
vector of features. Thereafter, the classification
methods such as Naive Bayes, k-nearest neighbours,
decision trees can be used. More details about the
feature-based algorithms are listed in Section 3.

In this paper, we propose a novel algorithm called

CBigSeq for event sequence Classification that based
on our big sequence method (BigSeq) [4]. First, to
construct our model, we divide the training sequences
into subsets based on the class label. In other words, if
we have m distinct class label then we divide the
training sequences into m subsets. Thereafter, we
construct BigSeq for each subset of sequences. Now,
we have m big sequences (BigSeqs) which will
represent our model. Finally, we classify the new coming

sequence based on the current m BigSeqs. Our

https://kjis.journals.ekb.eg/

experiments on three real datasets show that CBigSeq
has the best performance in most cases compared to the
state-of-the-art algorithm, SeqDT [5], in terms of
classification accuracy, total response time, and count
of utilized patterns.

Organization. This paper is organized as follows.

Section 2 reports the preliminary concepts. Section 3
presents the related work. Section 4 discusses the
proposed algorithm. Section 5 lists the experimental
results. Finally, Section 6 concludes the paper.

2. PRELIMINARY CONCEPTS

Let σ be a set of n distinct events. Event sequence V =

< v1, v2, ..., vh > over σ is ordered list such that vi ∈
σ. Event sequence U = {u1, u2, ..., ug} is subsequence

of the event sequence V if there are g integers (j1, j2,...,

jg) such that 1 ≤ j1 < j2 < ... < jg ≤ h and u1 = vj1 , u2 =

vj2 ,... ,ug = vjg . Event sequence with length h is called

an h-sequence. Let C = {c1, c2, ..., cm} be the set of m

distinct classes. A labelled sequence database D is a

set of rows. Each row contains a sequence s and its

class label ci. As an example, let we have Table 1.

This table contains the labelled event sequence

database D with C = {c1, c2}. The sequence S4 = CBC

has class label c1 and it is subsequence of the

sequence S2 = ACBC (S4 ⊑ S2). Also we can said S2 is

supersequence of S4. The set of all sequences in D

which have the same class label ck is denoted by Dk.

As an example, we have D1 = {S1, S2, S3, S4} and D2 =

{S5, S6, S7, S8}.

Table 1. Labeled Event Sequence Database, D

 For sequence classification, D is divided into two

subsets. The first set is the training dataset, Dtrain, to

build model (Table 2) and the second set is the test

dataset, Dtest, to test the model in terms of accuracy

(Table 3). The set of all sequences in Dtrain which have

the same class label ck is denoted by Dk
train. As an

example, we have D1
train = {S1, S2, S3} and D2

train = {S5, S6,

S7}.

Table 2. The Training Dataset of D, Dtrain

Table 3. The Test Dataset of D, Dtest

Problem Definition: Given the training sequence

dataset Dtrain and a new sequence with unknown class

label Snew. The objective is to construct an efficient

classifier (model) to classify Snew in which the

classification accuracy is high, the total response time

is responsible, and the count of utilized patterns is

small as possible.

3. RELATED WORK

The sequence classification is considered an

essential data mining task. In the literature, several

algorithms have been proposed for this problem.

Recall, based on the used strategy for designing the

model (classifier), current algorithms of sequence

classification can be partitioned into three types as

follows. The first type is the feature-based algorithms,

the second type is the distance-based algorithms, and

finally, the third type is the model-based algorithms.

In this paper, we focus in the feature-based

algorithms. More details about them are listed as

follows.

In feature-based algorithms, each sequence is

converted to a vector therefore the current algorithms

of vector data classification methods will be used such

as Naive Bayes, k-nearest neighbours, decision trees,

hidden Markov models, support vector machines, etc.

[6].

https://kjis.journals.ekb.eg/

To classify sequences, the authors of [7] used the

sequential patterns with Naive Bayes classification.

They proposed the FeatureMine algorithm (called

BayesFM) to efficiently construct the features from

the sequence dataset. The main disadvantage of this

method, in large feature space, the algorithm could not

effectively construct the discriminative features. The

Classify-By-Sequence algorithm (CBS) [8] was

proposed to classify large sequences. This algorithm

mines classifiable sequential patterns (CSPs) from the

sequences. Thereafter, based on a scoring function, it

assign a score to the new object for each class.

Authors of [9] proposed a direct sequential pattern

algorithm (BIDE-Discriminative) which uses class

information for direct mining of predictive sequential

patterns.

SeqDT [5] is a new feature-based classification

algorithm which is a tree-based sequence. This

algorithm. It constructs a decision tree over the feature

space of all subsequences on the training set. In this

algorithm, two data mining tasks are combined

namely, sequential pattern mining and decision tree.

In other words, it uses the methods of sequential

pattern mining to mine features for the tree-based

sequence classification. There are many disadvantages

of SeqDT as follows. Firstly, SeqDT consumes a lot

of time because it is two-phases procedure in which

the feature construction and decision tree construction

are two consequent phases. Secondly, many

parameters are determined as input for SeqDT such as

g (gap constraint), d (tree depth), maxL (maximum

pattern length), minS (minimum value of decreased

impurity generated by segmentation), threshold ϵ

(maximum value of Gini index in each node), and

minN (minimum number of sequences in each node).

More details about these parameters are listed in [5].

Unfortunately, setting the values of these parameters

is not simple task since each application domain may

need a specific setting. In contrast, as we will see our

proposed efficient method is a free-parameter method.

4. EVENT SEQUENCE CLASSIFICATION

USING BIGSEQ

First, we discuss the construction of Big Sequence

(BigSeq) as follows. The BigSeq method was

proposed in our previous paper [4] to summarize the

event sequence database. The main idea of BigSeq is

to merge all sequences into compact big sequence.

The construction of BigSeq is based on two

definitions (the longest common subsequence and the

novel compatible event set). We review the

construction of BigSeq using the following running

example.

Example 4.1. Given the labeled event sequence

dataset Dtrain = D1
train ∪ D2

train in Table 2. To construct

BigSeq according to D1
train = {S1, S2, S3} (Recall, all

sequences in Di
train have class label equals to ci). First,

we randomly select any sequence S ∈ D1
train as initial

value of BigSeq. Suppose S = S1 then the initial

BigSeq is S1 = ABCC. After that, for each remaining

sequence S′ ∈ D1
train − S1, we compute LCS(S′,

BigSeq) and store every remaining event e where e ∈

S′ and e ∉ LCS(S′, BigSeq). For instance, the longest

common subsequences LCS(S2, BigSeq) and LCS(S3,

BigSeq) are ACC and CC respectively. Also, for the

sequences S2 and S3, the set of remaining events are

{B} and {B} respectively. Based on the remaining

events of all remaining sequences, we compute the

compatible event sets (core). Here, in this example,

we have only one compatible event set core1, i.e. core

= {core1} = {{B,B}}. Thereafter, we compute the

representative event, erep, for core1 and insert it in

BigSeq according to the expected range of positions.

Here, erep is the event B. As result, the final Big

Sequence of D1
train, BigSeq(D1

train), is ABCBC. With

the same steps, we can find the final Big Sequence

of D2
train, BigSeq(D2

train). We have BigSeq(D2
train) =

ABCBA. For more details about the compatible

event sets, the expected range of positions, and

the construction of BigSeq, please read our

previous paper [4].

 Before the discussion of sequence classification

using BigSeq, we illustrate how to query BigSeq.

4.1. Querying BigSeq

To check that a given subsequence s belongs to a

sequence S (S ∈ D) or not, we can do this by checking

the Big sequence of D (BigSeq(D)) againt the

subsequence s with respect to the next two theorems.

Theorem 4.1 Given event sequence database D,

its Big Sequence BigSeq(D), and subsequence s.

If s ⋢ BigSeq(D) then s ⋢ S ∀ S ∈ D.

Example 4.2 Given the training dataset D1
train in Table

2, its Big Sequence BigSeq(D1
train), = ABCBC, and the

https://kjis.journals.ekb.eg/

subsequence s = BBB. Based on Theorem 4.1, we

have s = BBB ⋢ ABCBC = BigSeq(D1
train), then s ⋢S

∀ S ∈ D1
train.

Theorem 4.2 Given event sequence database D,

its Big Sequence BigSeq(D), and subsequence s.

If s ⊑ BigSeq(D) then either s ⊑ S where S ∈ D or

s ⋢S ∀ S ∈ D.

Example 4.3 Given the training dataset D1
train in Table

2, its Big Sequence BigSeq(D1
train), = ABCBC, and

the subsequence s = ABC. Based on Theorem 4.2,

we have s = ABC ⊑ ABCBC = BigSeq(D1
train) with s =

ABC ⊑ ABC = S1 and s = ABC ⊑ ACBC = S2. In other

hand, if we have another subsequence s′ = ABB ⊑

ABCBC = BigSeq(D1
train) but s′ ⋢ S ∀ S ∈ D1

train.

 If the subsequence s ⋢ BigSeq(D) then we sure

that s ⋢ S for each S ∈ D (Theorem 4.1). In the other

hand, if s ⊑ BigSeq(D) then either s ⊑ S where S ∈ D

or s ⋢ S ∀ S ∈ D (Theorem 4.2). In this case to prove

that s ⊑ S where S ∈ D or not, we can check the bit-

vectors of s event’s in BigSeq(D) by performing the

Anding operation on the corresponding bits in these

bit-vectors. If the result contains one bit equals to one

then s ⊑ S where S ∈ D otherwise s ⋢ S ∀ S ∈ D. See

next example for more details.

Example 4.4 Given the training dataset D1
train in Table

2, its Big Sequence BigSeq(D1
train), = ABCBC, and the

two subsequences s = ABC and s′ = ABB.

 For the subsequence s = ABC, we have s ⊑

BigSeq(D1
train) and it has three occurrences in

BigSeq(D1
train) with positions {1, 2, 3}, {1, 2, 5}, and

{1, 4, 5}. Next we separately discuss each occurrence.

 1- For the first occurrence, we perform the Anding

operation on bit-vectors that fall on positions 1, 2,

and 3 in BigSeq(D1
train). The output is 00000011

& 00000001 & 00000111 = 00000001. The output

bit-vector has one at position 1 (i.e. it is not

NULL). This means that s is contained in the

sequence, S1 (s ⊑ S1).

 2- For the second occurrence, we perform the

Anding operation on bit-vectors that fall on

positions 1, 2, and 5 in BigSeq(D1
train). The output

is 00000011 & 00000001 & 00000111 =

00000001. The output bit-vector has one at

position 1. This means that s is contained in the

sequence, S1 (s ⊑ S1). From the first and the

second occurrences of s in BigSeq(D1
train), we

have also two occurrences of s in the sequence S1

which are {1, 2, 3} and {1, 2, 4}.

 3- For the third occurrence, we perform the Anding

operation on bit-vectors that fall on positions 1, 4,

and 5 in BigSeq(D1
train). The output is 00000011

& 00000110 & 00000111 = 00000010. The output

bit-vector has one at position 2. This means that s

is contained in the sequence, S2 (s ⊑ S2).

 Note that from the first and the second occurrences

of s in BigSeq(D1
train), we have s ⊑ S1. Therefore, s

has two occurrences in S1. But, from the third

occurrence, s has only one occurrence in S2.

Algorithm 1: Querying BigSeq(D)

Input: The corresponding BigSeq(D) with bit vectors

sets of D and the query subsequence sq.

Output: W ⊆ D such that sq ⊑ S for each S ∈ W

otherwise NULL.

1. if sq ⋢ BigSeq(D) then // Theorem 4.1

2. return NULL

3. end if

4. else // Theorem 4.2

5. Find the set of all occurrences of sq in BigSeq(D),

O(sq).

6. for each occurrence o ∈ O(sq) do

7. Suppose p1, p2, ..., p|sq| be the positions of o in

BigSeq(D).
8. Compute B_output = B(ep1) & B(ep2) & ... &

B(ep|sq|) // epi is the event e at position pi in

BigSeq(D).
9. for each Bi ∈ B_output do

10. for j = 1 to 8

11. if Bi [j] = 1

12. W = W ∪ S8×(i−1)+j

13. end if

14. end for

15. end for

16. end for

17. return W

 For the subsequence s′ = ABB, we have s′ ⊑

BigSeq(D1
train) and s′ has only one occurrence in

BigSeq(D1
train) with position {1, 2, 4}. Therefore, we

perform the Anding operation on bit-vectors that fall

on positions 1, 2, and 4 in BigSeq(D1
train). The output

is 00000011 & 00000001 & 00000110 = 00000000.

https://kjis.journals.ekb.eg/

The output bit-vector has no ones (i.e. it is NULL).

This means that s′ ⋢ S ∀ S ∈ D and at the same time,

we have s′ ⊑ BigSeq(D1
train).

 Algorithm 1 outlines the process of querying

BigSeq(D). The input of this algorithm is the big

sequence of D, BigSeq(D), and the query

subsequence sq while the output is the set of sequences

in D that contains sq denoted as W. Lines 1-2 apply

Theorem 4.1 that is if sq ⋢ BigSeq(D) then returns

NULL. Lines 4-16 apply Theorem 4.2 as follows.

First, we find the set of all occurrences of sq in

BigSeq(D). denoted as O(sq). Second, for each

occurrence o = {p1, p2, ..., p|sq|} in O(sq), we Anding

the bit vectors of the events ep1 , ep2 , ..., ep|sq| in

BigSeq(D), where epi is the event e at position pi. We

denote the output of the Anding operation as

B_output. Note that B_output is a set of bit-vectors,

B_output = {B1,B2, ...,Bm}, where the length of Bi is 8

bits and m = D/8. Finally, for each block Bi ∈

B_output, if there exist any bit in any Bi equals to 1,

we add its corresponding sequence to W.

4.2. Classification Method

 In this section, we discuss the event sequence

classification using BigSeq method. Recall, for event

sequence classification, D is divided into two subsets.

The first set is the training set Dtrain (to build the

model) and the second set is the test set Dtest (to test

the model in terms of accuracy). To build the

proposed model using BigSeq, we divide Dtrain into m

subsets where m is the number of classes in the dataset

(m = |C|) such that each subset will have the same

class label. For each subset Di
train (Note that each

sequence S ∈ Di
train has class label ci such that i = 1,

..., m), we construct its Big Sequence, BigSeq(Di
train).

As a result, our model will be represented by m

BigSeqs. Based on our model, to classify a new

sequence Snew with unknown class label, we have two

cases as follows. In the first case, if Snew is not

subsequence of BigSeq(Di
train). for all i = 1, ..., m

(Theorem 4.1), we compute LCS(Snew, BigSeq(Di
train))

for each BigSeq(Di
train) in our model where i = 1, ...,

m. Thereafter, we search for the maximum length of

LCS among all BigSeqs. Suppose LCS(Snew,

BigSeq(Dk
train)) has the maximum value then we label

Snew by ck. In the second case, if there exist index k

such that Snew is subsequence of BigSeq(Dk
train) then

we simply label Snew by ck and we do not search for

the occurrences of Snew in BigSeq(Dk
train) to save a

time. In Experimental Evaluation section, we test the

performance of our classification method on real

datasets with respect to classification accuracy, total

response time, and count of utilized patterns.

Algorithm 2 outlines the construction of our model

and the classification of a new sequence Snew with

unknown class label.

Algorithm 2: Model Construction & Sequence Classification

Input: The training dataset Dtrain and the new

sequence Snew with unknow class label.

Output: The class label of Snew

1. Divide Dtrain into m subsets based on the class label

ci (Dtrain = Di
train)

2. for each i = 1 to m do

3. Construct the Big Sequence BigSeq(Di
train)

4. Arr_W [i] = Querying(BigSeq(Di
train), Snew) // Call

Algorithm 1

5. end for

6. if Arr_W [i] = NULL ∀ i = 1, ..., m // Theorem 4.1

7. for each i = 1 to m do

8. Compute LCSi = LCS(Snew, BigSeq(Di
train))

9. end for

10. k = argmaxi=1…m LCSi

11. Label Snew by ck

12. end if

13. else

14. Find the index k where Arr_W [k] ≠ NULL

15. Label the sequence Snew by ck

5 EXPERIMENTAL EVALUATION

 This section shows the results of experiments on

three real datasets. We compare our proposed

algorithm, CBigSeq, with SeqDT algorithm [5] (the

state-of-the-art algorithm). Note that, we used SeqDT

in our experiments beacuse it outperforms the four

algorithms SEQL [10], MiSeRe [11], Sqn2Vec [12],

and SCIP [13].

 CBigSeq was implemented in C++ with STL

library and compiled with GNU GCC while the code

of SeqDT was downloaded from

https://github.com/ZiyaoWu/SeqDT. Experiments

were run on laptop (Intel i3 2.4 GHz and 8G memory)

running Linux. The three datasets are reported in the

next section.

https://github.com/ZiyaoWu/SeqDT

https://kjis.journals.ekb.eg/

Table 4. Summary Statistics of the Real Datasets used in Our

Experiments

5.1 Datasets

 To evaluate our proposed algorithm, CBigSeq, we

used three real datasets namely, Question [14],

Poineer [9], and Gene [15]. These datasets are

summarized in Table 4, where |D| is the number of

event sequences, |E| represents the count of the events,

min_L, max_L, avg_L, and #classes represent the

minimum length, the maximum length, the average

length, and the number of distinct classes of the event

sequences respectively. Also, Table 5 reports URLs of

the used datasets.

Table 5. URLs of the Real datasets Used in Our Experiments

5.2 Performance of CBigSeq against SeqDT

CBigSeq algorithm is evaluated based on the

following three criteria:

1. Accuracy: To measure the accuracy of our model.

2. Total Response Time: To measure the efficiency

of CBigSeq.

3. The Count of Utilized Patterns: To show the count

of utilized patterns for classification.

5.2.1 Accuracy

 In this section, we discuss the accuracy (%) of the

two algorithms on the three datasets. For each dataset,

we select a number of sequences for training and other

number of sequences for testing as in Table 6.

Table 6. Train and Test Sequences for each Dataset

 Table 7 reports the accuracy (%) of the two

algorithms. From this table, CBigSeq shows higher

accuracy than SeqDT Question dataset whereas the

opposite occurs on the Pioneer dataset. On Gene

dataset, the two algorithms have the same accuracy

(100%).

Table 7. Accuracy (%) of the two algorithms (CBigSeq against

SeqDT)

 Figure 1 reports the scalability test (the number of

training sequences) of CBigSeq against SeqDT in

terms of accuracy. This scalability test was done on

the Question dataset with 238 sequences for testing.

From this Figure, CBigSeq algorithm shows a better

accuracy when the number of train sequences are

1000 and 1200. For example, with 1200 sequences for

training, the accuracy of CBigSeq is 96.6% while the

accuracy of SeqDT is 95.3%. On the other hand,

SeqDT has a better accuracy when the number of train

sequences are 900 and 1100. For example, with 900

sequences for training, the accuracy of SeqDT is

94.5% while the accuracy of CBigSeq is 94.1%.

 Recall, many parameters are determined as input

for SeqDT such as the two parameters g (the gap

constraint) and d (the tree depth) whereas our

proposed algorithm CBigSeq is free-parameters.

Therefore, in the next experiment, we show the

parameter sensitivity of SeqDT in terms of accuracy

while our proposed algorithm, CBigSeq, is stable.

This experiment was done on Question dataset with

1200 sequences for training and 238 sequences for

testing. We selected values for g and d as follows. The

values of g are 1, 2, 3, 4, and 5 whereas the values of

d are 2, 5, 7, 9, and 11. In Figure 2, for gap constraint

(g), the accuracy of CBigSeq is stable and equals to

96.6% while the accuracy of SeqDT is not stable and

falls on the range from 93.69% to 95.37%. In Figure

3, for tree depth (d), the accuracy of CBigSeq is also

stable and equals to 96.6% while the accuracy of

SeqDT is not stable and falls on the range from

83.19% to 95.37%.

https://kjis.journals.ekb.eg/

Figure 1. Scalability Test (Accuracy)

Figure 2. Gap Constraint (Accuracy)

Figure 3. Tree Depth (Accuracy)

5.2.2 Total Response Time

In this experiment, the number of sequences for

training and testing is the same as in the previous

section (see Table 6). Table 8 reports the total

response time (MSec) of the two algorithms on the

three datasets. From this table, on Question dataset,

CBigSeq outperforms SeqDT by three factors. On

Pioneer dataset, the two algorithms have

approximately the same time. While, on Gene dataset,

SeqDT outperforms CBigSeq by more than two

factors.

Table 8. Total Response Time (MSec) of the two algorithms

(CBigSeq against SeqDT)

 Figure 4 reports the scalability test (the number of

training sequences) of CBigSeq against SeqDT with

respect to total response time (MSec). This scalability

test was done on the Question dataset with 238

sequences for testing. From this Figure, CBigSeq

algorithm shows the best performance. In other words,

BigSeq outperforms SeqDT by more than three

factors.

 Now, we test the parameter sensitivity of SeqDT in

terms of total response time while the proposed

algorithm, CBigSeq (free-parameters) is stable. This

experiment was done on Question dataset with 1200

sequences for training and 238 sequences for testing.

As in previous section, we also used the two

parameters g (the gap constraint) and d (the tree

depth) with the same selected values. In Figure 5, for

gap constraint (g), the total response time of CBigSeq

is stable and equals to 343 MSec while the total

response time of SeqDT is not stable and falls on the

range from 1027 MSec to 1684 MSec. In other words,

BigSeq outperforms SeqDT by more than five factors.

In Figure 6, for tree depth (d), the total response time

of

CBigSeq is also stable and equals to 343 MSec while

the total response time of SeqDT is not stable and falls

on the range from 810 MSec to 1027 MSec. In other

words, BigSeq outperforms SeqDT by more than three

factors.

https://kjis.journals.ekb.eg/

Figure 4. Scalability Test (Total Response Time)

Figure 5. Gap Constraint (Total Response Time)

Figure 6. Tree Depth (Total Response Time)

5.2.3 The Count of Utilized Patterns

Table 9 shows the count of utilized patterns for

classification by the two algorithms on the three

datasets. Note that CBigSeq utilized only |C| patterns

i.e. |C| BigSeqs (Recall, |C| is the number of classes in

the running dataset) for all datasets. In the Question

dataset, the count of utilized patterns of CBigSeq is

smaller than SeqDT. This means that our proposed

method constructs an efficient model for classification

with only a small number of patterns. In the other two

datasets, Pionner and Gene, the two algorithms

CBigSeq and SeqDT construct their models by

approximately the same count of utilized patterns.

Table 9. The Count of Utilized Patterns of the two algorithms

(CBigSeq against SeqDT)

6 CONCLUSION

In this paper, we focus on classification event

sequence dataset. Existing algorithms of sequence

classification are partitioned into three types (feature-

based, distance-based, and model-based algorithms).

Here, we proposed a feature-based algorithm called

CBigSeq. CBigSeq is based on the idea of compact

big sequence (BigSeq). Our model contains a set of

BigSeqs such that each BigSeq in our model

represents a subset of training sequences that have the

same class label. Via an extensive evaluation on three

real datasets, we show that CBigSeq outperforms the

state-of-the-art competitor, SeqDT, in most cases in

terms of classification accuracy, total response time,

and count of utilized patterns.

Acknowledgments

I wish to express my deep gratitude to my mentor

Prof Dr. Karam Gouda. I am very grateful to my

parents, my wife, my brother, and my sisters for their

continuous moral support and encouragement.

https://kjis.journals.ekb.eg/

Conflicts of Interest

The author declares that I don’t have any conflict

of interest regarding this article.

REFERENCES

[1] Han, J., Pei, J. & Kamber M. (2011), Data mining:

concepts and techniques. Elsevier.
[2] Liu, X., Zhang, P. & Zeng, D. (2008) Sequence

matching for suspicious activity detection in anti-

money laundering. Proceedings of the IEEE ISI 2008

PAISI, PACCF, and SOCO international workshops

on Intelligence and Security Informatics.
[3] Sebastiani, F.(2002) Machine learning in

automated text categorization. ACM Comput. Surv.,

34(1).

[4] Hassaan, M. (2022). Summarizing Event Sequence

Database into Compact Big Sequence. International

Journal of Advanced Computer Science and

Applications, Vol. 13, No. 8.

[5] He, Z., Wu, Z., Xu, G., Liu, Y. & Zou Q. (2023),

Decision Tree for Sequences. In IEEE Transactions on

Knowledge and Data Engineering, vol. 35, no. 1, pp.

251-263.

[6] Xing, Z., Pei, J. & Keogh E. (2010) A brief survey

on sequence classification. ACM SIGKDD

Explorations Newsletter, vol. 12, no. 1, pp. 40–48.

[7] Lesh, N., Zaki, M. & Ogihara M. (2000). Scalable

feature mining for sequential data. IEEE Intell. Syst.,

vol. 15, no. 2, pp. 48–56.
[8] Tseng, V. & Lee, C. (2009) Effective temporal

data classification by integrating sequential pattern

mining and probabilistic induction. Expert Systems

with Applications, vol. 36, no. 5, pp. 9524–9532.

[9] Fradkin, D. & M¨orchen, F. (2015) Mining

sequential patterns for classification. Knowledge and

Information Systems, vol. 45, no. 3, pp. 731–749.
[10] Ifrim G. & Wiuf C. (2011) Bounded coordinate-

descent for biological sequence classification in high

dimensional predictor space. In Proceedings of the

International Conference on Knowledge Discovery

and Data Mining, pp. 708–716.

[11] Egho, E., Gay, D., Boull´e, M., Voisine, N., &

Cl´erot, F. (2017) A user parameter-free approach for

mining robust sequential classification rules.

Knowledge and Information Systems, vol. 52, pp. 53–

81.

[12] Nguyen, D., Luo, W., Nguyen, T., Venkatesh, S.

& Phung, D. (2018) Sqn2vec: Learning sequence

representation via sequential patterns with a gap

constraint. In Proceedings of the Joint European

Conference on Machine Learning and Knowledge

Discovery in Databases, pp. 569–584.

[13] Zhou, C., Cule, B. & Goethals, B. (2016) Pattern

based sequence classification. IEEE Transactions on

Knowledge and Data Engineering, vol. 28, no. 5, pp.

1285–1298.

[14] Kim, Y. (2014) Convolutional neural networks

for sentence classification. In Proceedings of the

Conference on Empirical Methods in Natural

Language Processing, pp. 1746–1751.

[15] Wei, L., Liao, M., Gao, Y., Ji, R., He, Z. & Zou,

Q. (2014) Improved and promising identification of

human micrornas by incorporating a high-quality

negative set. IEEE/ACM Transactions on

Computational Biology and Bioinformatics, vol. 11,

no. 1, pp. 192–201.

