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Abstract. Gene expression data has become an essen2al tool for cancer classifica2on because it provides substan2al insights 
into the underlying mechanisms of cancer progression. However, the high-dimensional nature of microarray gene expression 
data presents a significant challenge. This paper introduces a new method called IG-COA, which combines Informa2on Gain 
(IG) approach and Coa2 Op2miza2on Algorithm (COA), to iden2fy the biomarkers genes. COA is a recent algorithm that has 
not been previously examined for feature or gene selec2on, to the best of our knowledge. Firstly, the IG method is used 
because using COA directly on microarray datasets is ineffec2ve and can make it challenging to train a classifier accurately. 
Secondly, the COA algorithm is u2lized to select the op2mal subset of genes from the previously selected ones. The 
effec2veness of the suggested IG-COA method with a Support Vector Machine is tested on several microarray gene expression 
datasets, and it exceeds other state-of-the-art methods.  
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1 Introduction 
 In recent decades, bioinforma2cs has emerged as a 
prominent research field, facilita2ng the u2liza2on 
of computer science and computa2onal sta2s2cs 
technologies to comprehensively analyze an 
organism’s genomic, transcriptomic, and proteomic 
data [1]. In biomedicine, disease predic2on using 
microarray gene expression data is considered a 
crucial task [2]. A limited number of features 
effec2vely dis2nguish samples from dis2nct classes, 
while many others are deemed irrelevant, 
redundant, or generate noise. Moreover, it is worth 
men2oning that irrelevant features contribute to 
higher dataset dimensionality and greater 
computa2onal complexity in clustering and 
classifica2on tasks. Consequently, this can result in 
lower performance for machine learning (ML) 
algorithms [3]. Decreasing the dimension count in 
microarray datasets to a more manageable number 
can solve this problem [4]. Feature (gene) selec2on 
is a cri2cal technique applied in different fields of 
study, such as bioinforma2cs, data mining, ML, and 
paPern recogni2on. Gene selec2on primarily aims 
to simplify data representa2on by decreasing the 
count of features or variables that describe it 
without losing essen2al informa2on [4,5]. This 
technique is beneficial for numerous reasons, such 
as improving computa2onal efficiency, enhancing 
model accuracy, and facilita2ng data visualiza2on. 

Selec2ng the most valuable genes can also minimize 
the risk of overfiVng, which happens when a model 
becomes too complex and fits the training data too 
closely, resul2ng in weak performance on unseen 
data [4]. Gene selec2on algorithms can be 
categorized into filter, embedded, wrapper, 
ensemble, and hybrid methods. On the one hand, 
filter methods use sta2s2cal measures to rank the 
variables according to their relevance to the target 
variable [6]. One of the main advantages of filter 
methods is their simplicity and ease of 
implementa2on, making them par2cularly suitable 
for large datasets with numerous features. 
Moreover, these methods are fast and do not 
require a learning algorithm. However, filter 
methods have limita2ons, such as limited accuracy 
due to their reliance on sta2s2cal proper2es of the 
data, inability to capture interac2ons between 
genes, and sensi2vity to irrelevant genes in the 
dataset. Consequently, while filter methods can 
quickly minimize the count of genes in a dataset, 
they should be used cau2ously and in combina2on 
with other gene selec2on approaches to obtain 
op2mal results [4]. On the other hand, wrapper 
methods assess an ML model’s performance using 
subsets of features. They search for the op2mal 
gene subset that maximizes the model’s 
performance [7]. These approaches can be 
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computa2onally expensive, but they are generally 
more accurate than filter methods [4]. Several 
wrapper methods rely on heuris2c search 
algorithms to remove irrelevant genes. These 
methods ini2ate the process with a solu2on 
produced randomly, and in each itera2on, they step 
closer towards the op2mal subset of genes [3]. In 
the literature, it has been found that various meta-
heuris2c algorithms were employed as wrapper 
methods, such as Par2cle Swarm Op2miza2on 
Algorithm [8,9,10,11], Gene2c Algorithm (GA) 
[11,12,14], Ant Colony Op2miza2on Algorithm 
[13,15,53], Simulated Annealing Algorithm [16,19], 
Binary Whale Op2miza2on Algorithm [17], Binary 
Bat Algorithm [18], and many other algorithms. The 
key advantage of wrapper methods is the ability to 
assess the performance of an ML model using 
different subsets of features, allowing for a more 
comprehensive search across the feature space. This 
can result in improved accuracy and generalizability 
of the model. However, one major disadvantage of 
wrapper methods is their computa2onal complexity, 
mainly when applied to high-dimensional datasets. 
Furthermore, because wrapper approaches pick a 
subset of genes that are dependent on a specific 
classifier, they may fail to iden2fy important features 
that could be relevant to other classifiers. Moreover, 
wrapper methods’ exhaus2ve search approach 
poses the risk of overfiVng, resul2ng in reduced 
performance when tested on new data [3,4]. 
Therefore, while wrapper methods offer significant 
advantages, these limita2ons must be considered 
when selec2ng an appropriate feature selec2on 
methodology. On the contrary, embedded methods 
combine feature selec2on with the model-building 
process. The selec2on process is performed as part 
of training an ML algorithm [6]. A decision tree was 
used in [20], while the authors in [21] employed a 
backward feature selec2on process within the 
Mul2ple Criteria Linear Programming. Addi2onally, 
in [22], the authors developed a weighted gene 
selec2on approach embedded in the Bacterial 
Colony Op2miza2on algorithm. One of the primary 
benefits of embedded methods is that they can 
integrate feature selec2on directly into the model 
training process rather than requiring a separate 
feature selec2on step. This can lead to faster and 
more efficient feature selec2on, as well as reducing 

the risk of overfiVng [23]. However, one major 
drawback of embedded methods is that they are 
ocen limited by choice of learning algorithm 
because not all ML algorithms support this feature 
selec2on method [24]. Conversely, ensemble 
methods combine mul2ple feature selec2on 
methods to enhance the model’s overall 
performance. The idea is to leverage the strengths 
of different feature selec2on methods and reduce 
their weaknesses by combining them. For example, 
an ensemble approach may combine a filter method 
with a wrapper or an embedded method to choose 
the most useful genes [4]. For example, the authors 
in [25] developed a cross-entropy-based mul2-filter 
ensemble approach for gene selec2on. 
Furthermore, an ensemble of Chi-Square, ReliefF, 
Symmetrical, and Uncertainty filters was proposed 
in [26]. The authors in [27] developed an ensemble 
method that integrated G-Forest and GA. The main 
advantages of ensemble methods are that they can 
lead to more accurate and reliable performance 
with a reduced risk of overfiVng. However, they can 
be computa2onally expensive [4]. In addi2on, they 
rely on the assump2on that the individual 
algorithms being combined are themselves accurate 
and reliable. If one of the algorithms produces 
inaccurate results, it can nega2vely impact the 
overall performance of the ensemble. Hybrid 
methods, on the other hand, combine two or more 
feature selec2on methods to obtain a more compact 
and informa2ve set of features. For example, the 
authors in [28] developed a two-stage feature 
selec2on model that integrated Minimum 
redundancy, maximum relevance ensemble, and 
GA. Poongodi and Sabari in [29] suggested a hybrid 
model that combined a parallelized mRMRe and GA. 
Furthermore, a hybrid gene selec2on method 
consis2ng of two stages was proposed in [30]. Firstly, 
an ensemble of Chi-square, Informa2on Gain, and 
ReliefF was implemented. Secondly, the selected 
genes were input to Par2cle Swarm Op2miza2on 
(PSO) to obtain the final subset of og genes. In a 
paper by Kundu et al. (2022) [31], a gene selec2on 
approach consis2ng of two phases was introduced. 
In the first phase, Pasi Luukka’s feature ranking 
algorithm was employed to eliminate genes that 
were not relevant. In the second phase, an improved 
version of the whale op2miza2on algorithm, called 
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the altruis2c whale op2miza2on algorithm, was 
u2lized. This approach incorporated the concept of 
altruism into the whale popula2on. In [32], the 
experts developed a novel hybrid approach. This 
approach has two stages: the first stage involves 
using one-class SVM for detec2ng anomalies, and 
the second stage involves developing a guided GA to 
iden2fy the best subset of genes. Moreover, the 
authors in [33] developed a two-phase gene 
selec2on method. Firstly, an ensemble method that 
combined numerous filter-based methods, 
including the chi-square test, informa2on gain ra2o, 
and ReliefF, was developed. Secondly, a recursive 
flower pollina2on search algorithm is applied to 
iden2fy the op2mal subset of genes. Recently, 
hybrid gene selec2on methods have been widely 
developed due to their poten2al to enhance the 
accuracy and robustness of gene selec2on. 
Moreover, they require less computa2onal 2me 
than wrapper methods and are more efficient than 
filter methods. Addi2onally, hybrid methods limit 
the risk of overfiVng. However, there are also some 
disadvantages of hybrid gene selec2on methods. 
These methods increase the complexity of the 
developed gene selec2on method. Moreover, there 
is a risk of overfiVng. They can also be impacted by 
merging different gene selec2on algorithms. Despite 
these challenges, hybrid gene selec2on methods 
offer promising avenues for improving the 
effec2veness of gene selec2on compared with other 
approaches. Finally, both ensemble and hybrid 
approaches can effec2vely improve the 
performance of ML models by selec2ng or 
genera2ng a more informa2ve set of genes. 
However, they can also be more complex and 
computa2onally expensive than individual gene 
selec2on methods. 

1.1 Problem Statement 
 Let D be the input dataset containing gene 
expression values of size n × m, where n is the 
count of observa2ons and m is the count of 
genes. Each entry in D is the expression level of 
a gene in an observa2on. Let Y be the vector of 
size n, where each element represents the class 
label of a sample, where yi takes an integer value 
from 1 to K, represen2ng one of K possible 
cancer types. The target is to iden2fy a 

minimum number of genes S from the set of all 
genes {1, 2, ..., p}, where p is the total count of 
genes, and build a classifier f based on this 
subset S that maximizes the predic2on accuracy 

on a test set. Formally, we want to solve the 
following op2miza2on problem:  
where Acc(S) is the accuracy of the classifier f 
built using the subset of genes S. n is the total 
count of observa2ons in the test set, yi is the 
true label of the i−th observa2on, xi is the gene 
expression profile of the i−th observa2on, and 
f(xi ; S) is the predicted label of the i−th 
observa2on using the subset of genes S. 

1.2 Motivation and Contributions  
Mo2vated by the necessity of accurate 
iden2fica2on of informa2ve genes from high-
dimensional microarray gene expression data 
for faster computa2on and improved 
classifica2on performance, there is a cri2cal 
need for advanced hybrid gene selec2on 
methods that can effec2vely obtain the most 
informa2ve genes from microarray gene 
expression datasets. Since swarm op2miza2on 
has successfully solved many op2miza2on 
problems, it has been used extensively in the 
gene selec2on domain. The “No Free Lunch” 
theorem, however, states that there are no 
algorithms that are able to address all problems. 
As a result, this research paper inves2gates the 
latest swarm algorithms and their features to 
select one of them for implemen2ng a novel 
two-stage gene selec2on method to tackle the 
curse of dimensionality of microarray gene 
expression data. This paper selects the COA 
algorithm, which has many unique upda2ng 
mechanisms designed to mimic the ac2ons of 
coa2s observed in their natural habitat. At its 
core, COA aims to simulate two primary 
behaviors exhibited by coa2s: their hun2ng 
strategy when pursuing and capturing iguanas 
and their ability to avoid poten2al threats from 
predators. Moreover, the algorithm’s 
performance was tested using 51 objec2ve 
func2ons. These func2ons comprise 29 from the 
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IEEE CEC-2017 test suite and 22 real-world 
applica2ons from the IEEE CEC-2011 test suite. 
The performance of COA was then compared to 
that of eleven other commonly applied meta-
heuris2cs algorithms. Due to COA’s versa2lity in 
explora2on and exploita2on strategies, the COA 
algorithm can solve various op2miza2on 
problems. As a result, this paper develops a new 
hybrid gene selec2on algorithm that combines 
IG and COA to address the curse of 
dimensionality. The key contribu2ons of this 
study are as follows.  

§ Gene selec2on is a growing area of 
biomedical data analysis that is crucial 
to improving the performance of ML 
algorithms. This paper aims to suggest a 
hybrid gene selec2on algorithm that is 
made up of two phases for the 
predic2on of cancer based on gene 
expression.  

§ In the first phase, IG is used as filter 
method to eliminate some irrelevant 
genes. In the second phase, this paper 
exploits the ability of COA algorithm, 
which is a wrapper method, to address 
gene selec2on issue. To the best of our 
knowledge, this is the first use of COA 
for feature/gene selec2on.  

§ In this study, four swarm intelligence 
algorithms are integrated with IG to 
compare the developed IG-COA 
method, including both recent and 
former algorithms: Kepler Op2miza2on 
Algorithm (KOA), Social Ski-driver 
Op2miza2on (SSD), Whale Op2miza2on 
Algorithm (WOA), and Ar2ficial Bee 
Colony Algorithm (ABC).  

§ The IG-COA method is evaluated using 
six microarray gene expression 
datasets.  

§ The proposed algorithm is compared 
with many recent studies in this 
domain, which proposed between 2012 
to 2023, and it performs bePer than 
exci2ng algorithms. 

1.3 Paper Structure 

This paper is organized as follows. Sec2on 2 
explains some of the basic concepts applied in 
the proposed methods. The used methodology 
is explained in Sec2on 3. Finally, Sec2on 4 
discusses the experimental results, and Sec2on 
5 provides the conclusion of this paper. 
 

2 Background  
This sec2on presents the necessary informa2on 
required to understand the suggested method. 

2.1 Coati Optimization Algorithm 
A COA is a newly proposed meta-heuris2cs 
algorithm which simulates the characteris2cs of 
coa2s found in nature. COA’s basic essence is to 
replicate two key behaviors of coa2s: their 
approach when aPacking and hun2ng iguanas 
and their evasion from hunters [34]. Coa2s, 
commonly called coa2mundis, are omnivorous 
mammals that consume both invertebrate and 
small vertebrate prey. Notably, the green iguana 
cons2tutes a significant component of the 
coa2s’ diet. Due to their arboreal nature, coa2s 
frequently forage for iguanas in trees and ocen 
hunt collec2vely. The coa2s’ hun2ng strategy 
may involve some group members climbing 
trees to startle the iguana into leaping to the 
ground while others rapidly aPack it. However, 
despite their effec2ve preda2on tac2cs, coa2s 
are vulnerable to aPacks from hunters and large 
raptors. The COA algorithm aims to simulate the 
coa2s’ behaviors. The following subsec2ons 
summarize the mathema2cal model of COA 
algorithm. 

2.2 Stage 1: initialization  
Each coa2’s loca2on in the search space 
corresponds to the decision variable values, and 
each loca2on is a suggested solu2on to the 
op2miza2on problem. The COA begins by 
randomly ini2alizing the coa2s’ posi2ons in the 
search space using Equa2on 2. 

 
where Pi represents the placement of ith coa2 in 
search space; pi,j refers to the jth dimension. 
Pmaxj and Pminj define the upper and lower 
bounds of the jth dimension respec2vely, and 
random() generates a random real number 
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between 0 and 1. Equa2on 3 shows a popula2on 
matrix of the coa2s. 

 
Coa2s use this matrix to update their posi2ons. 
Each loca2on is a possible solu2on, and it is 
evaluated by using an objec2ve func2on as 
shown in Equa2on 4. 

 
where F represents a vector of the computed 
objec2ve func2on and Fi, where i= {1, 2, ..., M} 
is the value obtained using objec2ve func2on 
according for the ith coa2. 

2.3 Stage 2-exploration: a strategy for hunting and 
attacking iguanas  
This stage simulates a collec2on of coa2s climb 
a tree with the intent to in2midate an iguana, 
while some remain on the ground awai2ng the 
moment when the iguana falls. Once the iguana 
falls, the coa2s aPack and hunt it. This strategy 
allows the coa2s to explore various loca2ons in 
the search space, which showcases their ability 
to explore globally when solving problems. The 
COA algorithm assumes that the op2mal coa2 of 
the popula2on is located at the same loca2on as 
the iguana. In addi2on, it is supposed that ficy 
percent of the coa2s are ascending the tree, 
while the others are pa2ently wai2ng for the 
iguana to plummet to the earth. To 
mathema2cally simulate the posi2on of the 
coa2s climbing up the tree, Equa2on 5 is 
u2lized. 

 
Once the iguana falls to the ground, it is 
randomly placed in a new loca2on within the 
search space. Coa2s on the ground then move 
within this search space, which is simulated 
using Equa2ons 6 and 7, based on the iguana’s 
new random posi2on. 

where random() generates a random real 
number between 0 and 1. The posi2on of the 
best member, Iguana, in the search space is 
represented by the variable ’Iguana’, with its jth 
dimension being Iguanaj . An integer ’I’ is 
randomly picked from the set {1,2}. The loca2on 
of the iguana on the ground is randomly 
computed and represented by	Iguana!, with its 
jth dimension being Iguana	#

!and its objec2ve 
func2on value being 𝐹$%&'('!. The floor 
func2on (also called greatest integer func2on) is 
denoted by [.]. 
If the new loca2on of each coa2 leads to an 
improvement in the objec2ve func2on value, 
then it is considered acceptable for the update 
process. However, if there is no improvement, 
the coa2 will remain in its previous loca2on. This 
condi2on applies to all N coa2s, which is 
simulated using Equa2on 8. 

 
The ith coa2’s new loca2on, 𝑃)

*+, is computed 
using the value of its jth dimension, 𝑃),#

*+, and its 

objec2ve func2on value, 𝐹),#
*+.  

2.4 Phase 3-exploitation: a process of escaping from 
predators  
This stage of upda2ng coa2s’ loca2on in the 
search space is designed to imitate coa2s’ 
natural behavior when facing hunters and 
fleeing from them. When a predator aPacks a 
coa2, it quickly moves away from its current 
loca2on to a safer one. Coa2s move in such a 
way as to end up in a secure loca2on close to 
their current loca2on, demonstra2ng their 
proficiency in finding local solu2ons. In order to 
imitate the coa2s’ behavior, a new loca2on is 
created randomly near their present posi2on 
using Equa2ons 9 and 10. 
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If the value of the objec2ve func2on enhances, 
which is represented by Equa2on 11, then the 
recently computed loca2on is considered 
sa2sfactory. 

 
where 𝑃)

*-,  represents the updated posi2on of 
the ith coa2 computed during this stage of COA. 
Its jth dimension is denoted as 𝑃),#

*-, and its 

objec2ve func2on value is represented by 𝐹),#
*-,. 

random() generates a random number within 
the range of 0 to 1 is involved in the calcula2on 
process, along with an itera2on counter ”Iter”. , 
𝑃𝑚𝑖𝑛#./01., and 𝑃𝑚𝑎𝑥#./01.  represent the local 
lower and upper bounds of the jth decision 
variable, respec2vely. Similarly, 𝑃𝑚𝑖𝑛#	 	and 
𝑃𝑚𝑎𝑥#	refer to the lower and upper bounds of 
the jth decision variable, respec2vely. 

2.5 Repetition process 
The comple2on of an itera2on of COA occurs 
once all coa2s in the search space have had their 
posi2ons updated according to the the second 
and third stages. The popula2on is then updated 
using Equa2ons 5 through 11 and the process is 
repeated un2l the final itera2on of the 
algorithm. At the end of the en2re COA run, the 
output returned is the best solu2on obtained 
overall itera2ons. Figure 1 depicts the flowchart 
of COA algorithm. For more details, refer to the 
main paper that proposed COA algorithm [34]. 
 

3 Proposed IG-COA Gene Selection Method 
3.1 Framework of IG-COA method 

The IG-COA framework is shown in Fig. 2. As 
shown in this figure, the IG-COA method 

consists of three phases; the first phase is gene 
preprocessing, the second phase is gene 
selec2on which involves ranking all features in 
the dataset using IG. Acerwards, a popula2on 
with M individuals is ini2alized based on the top 
G genes selected by IG. Then, the search process 
of COA is established to obtain a final op2mal 
subset of genes. Finally, the third phase is the 
classifica2on phase where the final op2mal 
subset of genes is used for cancer classifica2on. 
The following subsec2on explains the proposed 
method in detail. 

3.2 Phase 1: Gene preprocessing 
Data preprocessing is a crucial step in analyzing 
microarray gene expression datasets. The raw 
data obtained from microarray experiments 
ocen contain missing values, which can occur 
for various reasons, such as experimental error 
or technical limita2ons. That can affect the 
accuracy and reliability of gene expression 
analyses. Failure to preprocess the data 
adequately can result in erroneous analysis and 
misleading results. Therefore, proper data 
preprocessing is essen2al for obtaining a 
meaningful analysis of the gene expression 
paPerns [4]. In the following lines, the used data 
preprocessing techniques are highlighted. 

3.2.1. Train-test Split  
This process is a fundamental ML technique 
for evalua2ng a model’s performance on 
unseen data. By spliVng the data, we can 
train the model on one subset of the data 
and then evaluate its performance on 
another subset that the model has not seen 
before. The goal is to assess how well the 
model will generalize to new, unseen data. 
In this paper, stra2fied train-test spliVng is 
used. This technique divides the dataset 
into two sets - one for training and the other 
for tes2ng. It ensures that each set has a 
balanced number of instances for all classes. 
The split is done in an 80-20 ra2o, with 80% 
of data reserved for training and 20% for 
tes2ng. 

3.2.2. Imputa0on of Missing Genes  
Some datasets have missing values. In this 
paper, the kNN algorithm imputes missing 



https://kjis.journals.ekb.eg/ 

values by replacing them with the average 
values of their closest neighbors in the 
training set. In this case, two instances are 
considered similar if their exis2ng gene 
values are similar. If an instance does not 
have a class label, it is generally omiPed 
instead of being imputed. 

3.2.3. Data Normaliza0on  
The goal of data normaliza2on is to 
transform a dataset into a standard format, 

typically to aid in comparing variables with 
different units, scales, or distribu2ons. It 
involves adjus2ng the values of features in a 
dataset to have a common scale without 
distor2ng differences in the ranges of values 
or losing informa2on. This can enhance the 
accuracy and performance of ML models 
[4]. This paper uses a min-max normalizer. 
 

 

 

Fig. 1: A flow chart of COA algorithm 

Fig. 2: An outlined of the proposed IG-COA method 
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3.3. Phase 2: Gene Selection  
The suggested gene selec2on method is a 
hybrid method combining IG and COA. The 
main stages of the gene selec2on phase are 
shown in the following lines. Algorithm 1 
shows the details of the proposed IG-COA 
method.  

3.3.1. Stage 1 
IG To speed up the selec2on process in the 
COA stage, the dimensionality of gene 
expression datasets is reduced by applying 
IG to select the most useful G genes (Line 1 
in Algorithm 1). According to previous 
studies [35,36,37,30], a fixed subset of 100 
genes is useful for filter methods. 
Acerwards, the dataset with picked genes is 
used as an input to the COA algorithm that 
is applied for further dimensionality 
reduc2on. 

3.3.2. Stage 2: Representation of Candidate Solutions 
COA is a con2nuous swarm algorithm that 
operates in con2nuous search spaces. It can 
handle a wide range of problems that can 
take on any real-valued number within 
specified bounds. However, conver2ng this 
con2nuous solu2on to a discrete one is 
desirable in the gene selec2on case. 
Rounding is a standard method for 
conver2ng a con2nuous solu2on to a 
discrete one. It involves rounding the 
con2nuous variables to the nearest integer 
value within a specified range and removing 
the repe22ons from the new solu2on. 
Finally, these integer values represent 
solu2ons in the discrete search space. The 
posi2on 𝑙𝑜𝑐)2converts to discrete using 
Equa2on 12. 

 
where 𝑙𝑜𝑐)2refers to the updated discrete 
posi2ons at j itera2on, and 𝑓3	finds the 
unique posi2ons. 𝑓4	is used to round the 
value of each dimension in loci to the 
nearest integer less than or equal to this 
value. 

3.3.3. Stage 3: Population Initialization 
Ini2alize the parameters of COA, including 
Number of itera2ons (MaxIter), popula2on 

size (M), lower bound (Pmin), upper 
bound(Pmax), dimensions (m). Then, create 
a random ini2al solu2on according to on 
Pmin and Pmax using Equa2on 2 (Line 4 in 
Algorithm 1). 

3.3.4. Stage 4: Objective Function  
The fitness func2on evaluates the 
effec2veness of each solu2on by measuring 
its ability to achieve the best performance. 
In gene selec2on, it is crucial to consider 
both high classifica2on accuracy and a lower 
number of genes simultaneously. If many 
sets of genes lead to the same accuracy, the 
smallest set is picked. SVM is a widely and 
accurately used classifier in literature. Thus, 
in this study, the objec2ve func2on is 
calculated using SVM, and its meta-
parameters are fine-tuned using a grid 
search algorithm with k-fold cross-
valida2on, where k=3. COA uses a fitness 
func2on that combines accuracy with the 
count of selected genes, calculated as the 
average of a k-fold cross-valida2on 
algorithm (where k=3). The obtained 
accuracy and corresponding gene count are 
compared with the best global solu2on and 
its accuracy. Based on these considera2ons, 
Algorithm 2 defines the objec2ve func2on.  

3.3.5. Stage 5: Optimization Loop 
The COA op2miza2on loop, described in 
Algorithm 1, starts at Line 7 and goes up to 
Line 32. Firstly, the algorithm’s random 
parameters are ini2alized. Secondly, the 
candidate solu2ons are generated, then this 
solu2on is converted into a discreet solu2on 
(as shown in Sec2on 3.3). Then, each 
candidate solu2on is assessed using the 
objec2ve func2on (as shown in Sec2on 3.3). 
Acerwards, the best solu2on is determined. 
Acer that, these solu2ons are updated, and 
then this new solu2on is converted into a 
discreet solu2on and evaluated. Finally, the 
op2miza2on process is terminated when 
MaxIter is reached. 

3.4. Phase 3: Cancer Classification  
An SVM algorithm, introduced in Drucker et 
al.’s paper [54], is a highly efficient method 



https://kjis.journals.ekb.eg/ 

widely used for classifying gene expression 
data. According to our previous 
comprehensive review in the domain of this 
paper [4], we found that the accurate classifier 
used in the literature is an SVM, and it 
outperforms other classifiers used. Therefore, 
this paper uses an SVM as a classifier. 
Addi2onally, a grid search algorithm is used to 
tune the SVM meta-parameters, such as 
kernel type and kernel parameter, if exist. 
Before applying grid search, a technique called 
k-folds cross-valida2on where k=3 is applied to 

get meta-parameters for SVM. This involves 
dividing the training set into k subsets, then 
using k-1 subsets to train the model and the 
remaining subset for valida2on. This process is 
repeated k 2mes, with each subset serving as 
the valida2on set precisely once. By averaging 
the results of these itera2ons, we obtain 
op2mized parameters for our SVM model. 
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4. Experimental Analysis and Discussion  

Firstly, this sec2on highlights the used 
microarray gene expression datasets. 
Secondly, it assesses the effec2veness of the 
suggested IG-COA algorithm. In this sec2on, 
IG-COA is compared with other swarm-based 
gene selec2on algorithms, conven2onal gene 

selec2on methods, and some of the state-of-
the-art methods in the literature, including 
2023 developed methods. 4.1 Datasets In this 
study, five commonly used microarray gene 
expression datasets are u2lized. They include 
binary- and mul2-class datasets. These detests 
are shown in Table 1. 

 

 
4.2.  Experimental Setup  

The proposed IG-COA method is implemented 
using Python language. Ini2ally, we split the 
datasets into 80% for training and 20% for 
tes2ng. We conducted all experiments on the 
same PC to ensure an unbiased comparison. In 
order to ensure fairness in the comparison, we 
ran all swarm algorithms twenty 2mes 
independently with the same ini2al posi2ons, 
the maximum number of itera2ons, the 
number of dimensions, and the number of 
search agents. These parameters are listed in 
Table 2. We u2lize the grid search op2mizer 
with k-fold cross-valida2on, where k = 3, to 
op2mize the SVM’s meta-parameters. 

4.3. Evaluation Metrics  

In this paper, the suggested method is 
evaluated based on several predefined criteria 
in order to measure its effec2veness at 
maximizing the desired outcome: 

§ Mean accuracy (i.e., fitness value) - 
measures the method’s overall 
performance regarding maximizing 
the objec2ve func2on. A higher mean 
accuracy indicates that the method 
performs bePer at achieving the 
desired outcome.  

§ The number of selected genes - 
evaluates the method’s efficiency in 
selec2ng the most relevant genes for 
maximizing the objec2ve func2on. A 
lower number of selected genes 
implies that the method is more 
effec2ve at iden2fying essen2al genes 
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that can aid in achieving a bePer 
solu2on.  

§ Standard devia2on - this parameter 
helps understand how consistent the 
results of the method are in 
maximizing the objec2ve func2on. 
Suppose the mean value is high and 
the standard devia2on value is low. In 
that case, we can infer that the 
method is reliable and produces 
consistent results in maximizing the 
objec2ve func2on. By using these 
criteria, we can comprehensively 
evaluate the suggested method’s 
ability to maximize the objec2ve 
func2on, enabling us to determine its 
efficacy for the gene selec2on 
problem. 

4.4.  Result analysis and discussion  
This study proposes a new gene selec2on 
method called IG-COA, which is compared 
with other swarm algorithms in Sec2on 4.4 
and widely used filter-based gene selec2on 
methods in Sec2on 4.4. Finally, we evaluate 
the performance of our IG-COA method 
against state-of-the-art gene selec2on 
methods discussed in Sec2on 4.4. Through 
this comprehensive evalua2on, we aim to 
demonstrate that our proposed method 
outperforms exis2ng approaches in terms of 
accuracy, number of selected genes, and 
stability. 

 
 
 
 

4.4.1. Comparison with other swarm optimization 
algorithms  
In this study, the IG-COA algorithm has been 
thoroughly evaluated and compared with 
other state-of-the-art swarm algorithms, 
such as ABC, WOA, SSD, and KOA. This 
comparison aims to demonstrate its 
superiority regarding obtaining the highest 
mean fitness value (i.e., accuracy) with the 
minimum number of selected genes. To 
validate the effec2veness of our proposed 

method, we employ sta2s2cal metrics, 
including mean and stander devia2on (Std.). 
Table 3 shows the mean accuracy, the 
number of selected genes, and Std. of the 
developed IG-COA in comparison with IG-
ABC, IG-WOA, IG-SSD, and IG-KOA. It can be 
witnessed that the proposed IG-COA 
method exceeds others. The reported mean 
accuracy, number of selected genes, Std. are 
computed for the op2mal solu2on obtain so 
fair over 20 independent execu2ons. It can 
be witnessed that, over all datasets, the IG-
COA method outperforms other methods 
with accepted Std., followed by IG-SSD. 
Addi2onally, IG-COA method aPains the 
highest results for five datasets, DS 1, Ds 2, 
DS 3, DS 5, and DS 6, while IG-ABC 
outperforms others in DS 1. Moreover, 
while some methods obtain the same 
accuracy as the proposed IG-COA method 
(100%), the IG-COA selects the minimum 
number of genes. Fig. 3 compares the 
performance of the proposed IG-COA with 
others overall datasets. As shown in Fig. 3, 
IG-COA achieves the highest accuracy 
(99.25%) with the minimum number of 
selected genes (19.14), followed by IG-SSD, 
accoun2ng for 98.68% accuracy, and 16.05 
selected genes. 

 

Fig.3: The average performance of IG-COA algorithms and other 
algorithms overall datasets 
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4.4.2. Comparison with traditional gene selection 
methods  
The IG-COA method is compared with some 
well-known gene selec2on methods, 
including IG, Fisher Score (FS), Relieff (RF), 
and Minimum Redundancy, Maximum 

Relevance (mRMR). As shown in Table 4, 
overall, the developed IG-COA method 
outperforms other filter methods in terms 
of average accuracy and the number of 
selected genes. IG-COA is the only method 
which obtains 100% accuracy for DS 1, DS 3, 
and DS 6, whereas in DS 1, and DS 2 several 
filter methods achieve 100% accuracy, with 
a high number of selected genes compared 
with the proposed IG-COA method. 
 

4.4.3. Comparison with the up-to-date gene selection 
methods  
The proposed IG-COA method is compared 
with some of the most advanced methods 
developed between 2012 to 2023 as 
presented in Table 5. The chosen literature 

included diverse categories of gene-
selec2on methods: ensemble, filter, 
wrapper, and hybrid. The IG-COA method 
surpasses other up-to-date methods with 
100% accuracy for DS 2, DS 3, DS 4, and DS 
5, and 99.2% and 99.25% for DS 1 and DS 6, 

respec2vely. The proposed IG-COA 
improves the accuracy of overall datasets by 
2.525% and reduces the number of selected 
genes by 46.69. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 



https://kjis.journals.ekb.eg/ 

 
 

 
5. Conclusion  

Microarray gene expression analysis has been 
widely used in cancer research to iden2fy 
molecular subtypes of cancer. However, gene 
expression data’s high-dimensional nature is a 
major challenge for accurate cancer 
classifica2on. This research introduces a new 

gene selec2on method named IG-COA to tackle 
this problem. The IG-COA method integrates IG 
and COA to select the most valuable genes for 
cancer subtype classifica2on. The COA 
algorithm is a recent swarm algorithm, and as 
far as we know, there has yet to be any prior 
inves2ga2on of the COA algorithm to select 
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features or genes. Moreover, the IG method 
filters out irrelevant genes. Then, the COA 
algorithm is u2lized to select the op2mal gene 
subset. The proposed IG-COA method is tested 
on publicly available microarray gene expression 
datasets and surpasses exis2ng state-of-the-art 
methods. The IG-COA method enhances the 
performance of cancer classifica2on models by 
reducing the number of irrelevant genes while 
accurately classifying cancer subtypes. This 
study contributes to advancing gene expression 
data analysis in cancer research. Despite 
outperforming other state-of-the-art methods, 
future research needs to address some areas for 
improvement. The weaknesses are as follows. 
Hybrid methods ocen require more 
computa2onal resources than individual 
methods, leading to longer processing 2mes 
and higher computa2onal costs. Although the 
computa2onal 2me of the IG-COA method may 
be slower than that of filter methods, it is 
deemed acceptable as a smaller subset of genes 
with high accuracy is selected. Moreover, the 
performance of hybrid gene selec2on methods 
can depend heavily on the specific combina2on 
of algorithms used, making it difficult to 
generalize findings across different domains. 
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