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Abstract 

The recent surge of interest in Software Defined Networking (SDN) technology is attributed to its 
centralized administration and control approach, which enhances network management and 
streamlines infrastructure maintenance. Despite its apparent sudden emergence, SDN is rooted in 
a lineage of endeavors aimed at enhancing network programmability. SDN offers real-time 
responsiveness and meets demanding high availability criteria. However, this novel paradigm 
encounters various technological challenges, some intrinsic and others inherited from pre-existing 
technologies. This study focuses on illuminating routing traffic concerns within the realm of SDN 
and provides insights into the forthcoming challenges that confront this transformative network 
model, encompassing both protocol and architecture perspectives. Additionally, we aim to explore 
diverse extant solutions and mitigation strategies that tackle issues of SDN scalability, elasticity, 
dependability, reliability, high availability, resiliency, and performance. This study entails a 
systematic analysis of 16 scholarly articles addressing routing traffic matters in the context of 
SDN. Through inductive analysis, this paper discerns and elucidates solutions for recurrently 
highlighted issues within academic discourse. 

Keywords—Software Defined Networking, SDN, Traffic, Load-Balancing, Traffic Optimization and 
Path Selection 

 

1. Introduction 

Traditional routing protocols exhibit inefficiency within expansive and intricate networks, 
primarily due to their reliance on information flooding and localized routing computations [1], [2] 
. The Software-Defined Networking (SDN) paradigm effectively tackles these drawbacks by 
centralizing the control plane, thereby facilitating enhanced information exchange and utilization. 
This engenders a network architecture characterized by heightened flexibility and optimization, 
aptly aligned with contemporary application requisites. Specifically, SDN decouples the control 
plane from the data plane, yielding a more streamlined approach to packet management [3]. The 
control plane assumes responsibility for routing determinations in an entity known as the SDN 
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controller [4], while the data plane undertakes the task of packet forwarding. This segregation 
empowers the control plane with a holistic network perspective, enabling more judicious routing 
choices [5]. The controller effectively manages flow control between the two planes by interacting 
through Application Programming Interface (API) between the two plans passing by the 
application layer as illustrated in Figure 1. The primary objectives of SDN are to simplify network 
and service management, reduce costs, and improve adaptability. SDN employs the OpenFlow 
protocol [6] to facilitate communication between the control and data planes. This strategic 
arrangement empowers the control plane to optimize traffic routing at the level of each distinct 
flow. As a consequence of these inherent benefits, SDN emerges as a propitious technology for 
elevating the efficiency and scalability of expansive, intricate networks. 

 
Figure 1. SDN paradigm architecture 

SDN enables the utilization of two primary Application Programming Interfaces (APIs), namely 
Southbound APIs and Northbound APIs, which facilitate bidirectional communication and 
interaction with the control and data planes. Employing Northbound APIs within an SDN 
controller enables programmatic control over the network infrastructure, while Southbound APIs 
serve as the intermediary links between control and forwarding components [7]. Ye contemporary 
data landscape is characterized by high volumes of video traffic, the proliferation of large data 
centers, and the mobility of network users. Yese factors can lead to significant traffic congestion 
and performance problems for network operators. In addition, data center operators are facing 
challenges due to the rapid growth of server and virtual machine deployments, as well as the 
increasing amount of server-to-server communication traffic. SDNs can provide a centralized 
control plane that can optimize network traffic flows and dynamically adapt to changing conditions 
[8]. Yis can help to improve network performance and reliability and reduce the risk of traffic 
congestion. While software-defined networking (SDN) offers many advantages for improving 
network performance, its architecture also introduces some challenges. Ye structure of the paper 
is organized as follows. Section 2 discusses the background of SDN traffic routing issues and 
strategies. Section 3 discusses the Related literature where Research pertaining to traffic load 
balancing and traffic resilience is analyzed in sub-section 3.1 and sub- section 3.2 review the 
schemes designed for traffic optimization and path selection. Section 4 explores a comparison of 



evaluation tools and performance results including the limitations. Finally, section 5 concludes 
this paper and introduces future works.  

 

2. SDN Traffic Routing issue and strategies 
 

2.1. SDN Traffic Routing issue 

The challenges and issues that are considered a paramount importance of traffic routing in the 
SDN environment are the following: The following are the most important challenges and issues 
of traffic routing in SDN environments [9]: 
- Scalability remains vital: The capacity of SDN networks to handle extensive device counts 

and traffic flows is crucial. This poses a challenge as SDN controllers must manage substantial 
data and swiftly determine routes. 

- Real-time adaptation to topology shifts: SDN networks must promptly respond to dynamic 
alterations in network structure. This is imperative since SDN controllers must swiftly reroute 
traffic to bypass failed connections or congested nodes. 

- Meeting diverse QoS demands: Adhering to distinct application QoS requirements is essential 
for SDN networks. SDN controllers must effectively prioritize and route traffic, aligning with 
each application's distinct needs. 

- Elevated security and privacy considerations: Ensuring the security and confidentiality of user 
data within SDN networks is paramount. The centralized control and data of SDN networks 
create susceptibility to potential breaches. 

- Optimal resource utilization: Efficiently leveraging network resources is a core requirement 
for SDN networks. SDN controllers must formulate routing decisions that minimize 
congestion and maximize bandwidth deployment. 

Despite these challenges, SDN is a promising technology with the potential to revolutionize the 
way networks are managed. As the technology matures, these challenges will likely be 
addressed, and SDN will become a more viable solution for a wide range of networks. 
 

2.2. SDN Traffic Routing strategies 

Software-Defined Networking (SDN) employs diverse strategies for traffic routing, the common 
strategies shown in figure 2 and categorized as follows [10]: 



 
Figure 2. SDN common traffic routing strategies 

 
Static Routing: Involves manually set routes, suitable for stable traffic patterns. 
Dynamic Routing: Adapts routes dynamically using algorithms, excelling in dynamic traffic 
scenarios. 
Hybrid Routing: Merges traditional and SDN-based approaches for combined benefits. 
Load Balancing: Distributes traffic evenly across paths to enhance resource usage and avert 
congestion. 
Traffic Engineering: Intelligently manages traffic flows to optimize performance and resource 
allocation. 
Multi-path Routing: Improves network dependability by employing multiple routes 
simultaneously. This includes Equal-Cost Multipath (ECMP), which uniformly spreads traffic 
across equitably costed paths to optimize resource usage and balance loads, and Unequal-Cost 
Multipath (UCMP), which allocates distinct weights to paths according to their capacities, 
latencies, or expenses. 
Machine Learning-based Routing: Utilizes machine learning for optimized routing decisions 
based on historical data and changing network conditions as predictive routing and reinforcement 
learning routing. 
Quality of Service (QoS)-based Routing: Prioritizes traffic according to QoS needs like latency 
and packet loss. 
 
3. Related literature 

This paper provides an extensive survey of academic literature concerning the enhancement of 
traffic routing within the realm of Software-Defined Networking (SDN). The survey is organized 
into two primary sections. The first section critically reviews studies focused on traffic load 
balancing and traffic resilience, which aim to evenly distribute traffic across multiple links or paths 
to enhance network performance and maintain traffic delivery even during link failures. The 
second section analyzes research pertaining to traffic optimization and path selection, which is 



concerned with finding the best paths for traffic to take in order to minimize delay, maximize 
throughput, or minimize cost. 
 

3.1.Traffic Load Balancing & Traffic Resilient 

A method of load balancing based on server response time (LBBSRT) [11], aims to solve the 
problem of load balancing in the server cluster based on the server response time. LBBSRT 
chooses the server with minimum response time to provide services to users. The server response 
time is defined as the interval from accepting user requests to responding to user requests. 
Traditional schemes do not incorporate the server response times while balancing the server loads. 
The system model was formulated within the OpenFlow environment, illustrated in Figure 3. 

 

Figure 3. LBBSRT System model 
LBBSRT uses the control plane to obtain the server response times accurately and effectively. The 
system is composed of two algorithms: one for real-time measuring of response time for each 
server in which, the server response time is obtained by parsing the Packet_in message which is 
sent by the switch. While the other for handling user requests, the controller handles the ARP 
messages (ARP_broadcast) that are sent by users and handle the user request by sending an ARP 
reply packet to users and then selecting the server with minimum or stable response time according 
to the obtained server data. Because the server response time directly reflects the server load 
capability, selecting a server based on the response times helps to send user requests to the servers 
operating under minimum server load to extract maximum performance. The longer the response 
time is, the higher the corresponding load is. The suggested LBBSRT method effectively leverages 
server resources, resulting in superior load-balancing outcomes and has been shown to have 
significant advantages in terms of overall response times and load balancing when contrasted with 
conventional Round Robin and Random strategies. 

André and Fernando introduced a fault-tolerant controller framework for Software-Defined 
Networking (SDN) called RAMA [12]. The novelty of the solution lies in Rama not requiring 
changes to OpenFlow nor to the underlying hardware, allowing immediate deployment. The Rama 
controller framework adopts a primary/backup model to ensure SDN controller fault tolerance. 
RAMA, has a high-level architecture with OpenFlow-enabled switches, controllers managing the 
switches, and a coordination service. The model includes a primary controller and multiple backup 
controllers to tolerate faults. The primary/backup model allows for fault tolerance by electing a 
new leader when the master controller fails. The coordination service ensures strong consistency 



among controllers, but it becomes a system bottleneck due to the need for agreement between 
replicas. The protocol presented aims to handle switches' state consistently in the presence of 
faults. Furthermore, the RAMA controller framework guarantees three essential properties: (i) 
events are processed precisely once by the controllers, (ii) all controllers process events in the 
same order, ensuring they reach the same state, and (iii) switches process commands exactly once 
using Open Flow bundles [13]. 

The RAMA controller framework uses a two-stage replication protocol ensuring the consistency 
of the controller state. The first stage involves replicating the event to all replicas of the controller. 
The second stage involves verifying that the event has been processed successfully by all replicas 
of the controller as figure 4. 

 

Figure 4. RAMA event processing structure [12] 

RAMA offers significant advantages as it ensures consistent command and event processing, 
providing equivalent strong assurances as Ravana [14] without the need for any modifications to 
switches or the OpenFlow protocol. This quality makes RAMA a highly effective facilitator for 
the seamless implementation of fault-tolerant SDN solutions. RAMA is a robust SDN controller 
platform designed for fault tolerance, providing equivalent strong assurances as Ravana without 
the need for any modifications to switches or the OpenFlow protocol. On the other hand, RAMA 
does have some drawbacks compared to Ravana. The implementation of Rama results in higher 
costs due to increased network message exchanges and the introduction of additional mechanisms 
like bundles, which add to the overall overhead of the solution. Despite these drawbacks, the 
performance impact is relatively minor, and Rama's core value proposition of ensuring consistent 
command and event processing without requiring modifications to switches or the OpenFlow 
protocol remains compelling. Consequently, Rama remains a valuable enabler for the immediate 
adoption of fault-tolerant SDN solutions. 

[15] Introduced a mechanism which aims to achieve efficiency by reducing host overhead and 
preventing packet reordering, without being restricted to a particular version of OpenFlow 
supported by the used controllers and switches. The proposed mechanism was assessed using 
MultiPath Transmission Control Protocol (MPTCP) [16] . The study explores the integration of 
SDN components, such as the SDN controller and virtual switch, within end-hosts to improve 
network performance. The MPTCP connection functions as a thin intermediary between the 
application and TCP layers. It enables the creation, management, and termination of TCP sub-
flows, which start with the exchange of SYN, SYNACK, and ACK messages, as shown in Figure 
5. The MPTCP protocol utilizes several types of messages, such as MP_CAPABLE, 



ADD_ADDR/REMOVE_ADDR, DATA_FIN, FIN flag, RST/FIN, and MP_FASTCLOSE, to 
establish and terminate connections and ensure backward compatibility.  

 

Figure 5. MPTCP Operations [15]. 

MPTCP connection must support the throughput of all flows without unfairly affecting normal 
TCP flows in the network. Additionally, both ends of the connection must be controlled during the 
connection's lifetime for the successful deployment of MPTCP. The introduced mechanism 
architecture setup involves a switch that controls the host's external network interfaces (eth0 and 
eth1). Two virtual network interfaces (veth0 and veth1) are connected, where veth0 is linked to 
the switch, and veth1 is an internal gateway for application traffic. The switch employs match-
action rules set by the controller to implement traffic load balancing, selecting the external 
interface (eth0 or eth1) through which packets are forwarded as illustrated in figure 6. 

 

Figure 6. The architecture of host-based network load-balancing 
mechanism using OpenFlow [15]. 



This mechanism optimizes traffic distribution and load balancing within the network by 
performing the following steps: 

• Packet Processing: The controller receives packets from the switch. 
• TCP SYN Check: The controller checks if the received packet is a TCP SYN packet. 
• Interface Assignment: If the packet is a TCP SYN packet, the controller employs a 

weighted round-robin load-balancing algorithm to assign an appropriate interface to the 
new flow. 

• OpenFlow Rule Creation: Once the interface is determined, the controller creates an 
OpenFlow rule that matches TCP/IP packets and the specific source port of the received 
packet. 

• Forwarding Instruction: The controller instructs the switch to forward the packet through 
the chosen interface as the output action. 

• Rule Installation: Finally, the controller installs the newly created OpenFlow rule on the 
switch. 

By carrying out these steps, the introduced mechanism enables dynamic interface assignment 
and traffic redirection based on OpenFlow rules, facilitating effective and efficient 
management of network flows. Implementing the proposed mechanism in existing SDN-based 
load-balancing approaches, it demonstrates excellent performance, not only when using single-
link capacity but also using Multipath TCP (MPTCP) approaches. 

Hamza et al. [17] Proposed the multiple threshold load balance (MTLB) switch migration scheme 
that aims to solve load imbalance and prevent controller overload. MTLB categorizes the load into 
various progressive levels that serve as the foundation for switching the migration process in cases 
where the load of a controller is dissimilar from that of others. This results in the threshold value 
being modified dynamically. The threshold value is subject to change based on the load status, 
with a dynamic approach that can shift from one value to another based on the average load. MTLB 
utilizes a trigger factor instead of periodic updates to update load information among controllers. 
The scheme initially categorizes the load into appropriate threshold levels for synchronization and 
migration handling. When a controller's load exceeds or approaches the threshold, it notifies the 
others to update their load information, reducing unwanted overhead from load information 
synchronization and handling the migration effectively. If there is a significant difference in load 
levels between controllers, the scheme executes a switch migration with careful consideration of 
the emigrant switch and target controller as mentioned in figure 7. 



 
Figure 7. The architecture of the MTLB-Distributed SDN Model [17]. 

The scheme has three stages modules: checking for updates, detecting load imbalance, and 
selecting the suitable switch and controller for migration shown in figure 8. 

 
Figure 8. The MTLB scheme flowchart [17]. 

The system employs four status levels and three load thresholds. The highest threshold, 
"Overload," signifies that the controller has reached its full capacity and prompts immediate 
migration. Controllers in the "Highly Loaded" status can still operate for a limited duration but 
necessitate migration if other controllers are idle or in a normal state. "Normal" controllers are 
equipped to handle unexpected scenarios, while "Idle" controllers have the highest priority in 
receiving switches. The system's load management is thus designed to ensure efficient resource 
utilization and prevent performance bottlenecks. The MTLB scheme outperforms all other 
schemes with its high average throughput of approximately 1300 and 5000 packet/s. It also excels 
in having the lowest average packet delay compared to other schemes, while SMDM and EASM 
fall in between, and DDS experiences significant fluctuations and the highest peak delay. In terms 
of migration cost, SMDM has the highest, while EASM and DDS show similar costs due to their 
migration decision similarities. On the other hand, the MTLB scheme boasts the lowest migration 
cost and packet loss. The MTLB scheme is also superior in terms of communication overhead, 



being the lowest among all schemes. SMDM and EASM rank in the middle, while DDS exhibits 
high fluctuations based on traffic load. The MTLB scheme's effectiveness lies in its use of 
controller load status for efficient load information dissemination among controllers. Overall, the 
MTLB scheme offers the best performance and efficiency among the evaluated schemes. 

To address the challenges of communication delay between controllers and switches, as well as 
inter-controller communication issues resulting from link failures in the network, Chunlin et.al 
[18] introduced a novel model based on task latency and dynamic constraints. The heuristic ant 
colony algorithm (HACA) [19] is employed for dynamically allocating computational resources, 
considering factors such as the traffic volume of each controller, available resources, the distance 
between controllers and switches, and the time delay between controllers caused by the 
communication delay occurring when controllers interact with each other. The proposed model 
leverages two key aspects: first, the development of a dependable controller placement method 
that optimizes latency and load considerations, improving the load optimization multi-controller 
placement (LOCP) algorithm. Secondly, the formulation of a resource allocation algorithm that 
takes into account task latency and reliability constraints, using the HACA. Improvement 
operation of a multi-controller placement (LOCP) algorithm illustrated in figure 9: (1) User 
devices connect to the edge computing layer via network access points (e.g., wireless access points, 
base stations) to access services. (2) A multi-access edge computing (MEC) server [20] located 
near the base station provides computing, and storage resources, and collects/analyzes information 
from end devices, reducing data and enhancing network service quality. (3) The MEC server 
connects to a local SDN controller through an OpenFlow switch for efficient network traffic and 
resource management. (4) A global controller oversees the local SDN controller, updating data 
matching and processing rules through operation status exchange. (5) Controllers communicate 
using an east-west interface, ensuring seamless coordination. 

 

Figure 9. Dynamic controller placement and resource allocation in an SDN-based multi-access edge computing 
system [18]. 



By adopting this architecture, the approach optimizes network performance and resource 
utilization through edge computing and SDN-based control, resulting in enhanced user experiences 
and efficient network services. Regarding the controller placement problem, the research focused 
on three primary performance metrics. Firstly, it examines the delay between the controller and 
the switch. Secondly, it analyzes the time delay between controllers, due to inter-controller 
communication. Lastly, the research addresses load balancing to ensure equitable distribution of 
processing tasks among controllers. The study addressed the controller placement problem, 
focusing on delay and load optimization, while also considering network link connectivity. 
Experimental results demonstrate the improved LOCP algorithm's efficacy in achieving a balanced 
network load and reducing network overhead, particularly in small and medium-sized networks 
when compared to existing approaches. In addition, the improved HACA algorithm' solves the 
problem of work resource load allocation and effectively reduces the user resource response time 
as well as the average completion delay under the premise of ensuring the reliability constraint. 

Jehad and Byeong-hee [21] Proposed a mathematical decision-making framework by calculating 
the optimal controller in terms of its features that enhance the performance of the Software-Defined 
Internet-of-Things (SD-IoT) using an analytical network decision-making process (ANDP) model 
[22]. The controller selection technique is based on a qualitative and quantitative examination of 
SDN controllers for SD-IoT. They determined ten considered characteristics of the controllers for 
the IoT environment listed in table 1. ANDP is used to determine the high-weight SD-IoT 
controller by computing weights for each controller, and then ANDP ranks the controllers with the 
best feature set for SD-IoT among others. 

Calculate Controller Weights after applying the comparison matrix that is the outcome of all 
judgments of the controllers’ supporting features which are important in SDN based on the 10 
characteristics listed in the following table. 

Table 1. List of features for SD-IoT performance evaluation [21]. 
Serial# Notation Name Description 

1 B1 OpenFlow-support OpenFlow version1.0–1.5 
2 B2 GUI Web based or Python-based 
3 B3 NB-API support REST-API 
4 B4 Clustering support To ensure reliability and performance 
5 B5 Openstack networking Enabling different network technologies via quantum API 
6 B6 Synchronization State synchronization of the clusters 
7 B7 Flow requests handling The capability to handle the flow requests 
8 B8 Scalability Adoptability in the extended networks 
9 B0 Platform support Windows, Mac, Linux 
10 B10 Efficient energy management The ability to utilize energy efficiently 

 

The evaluation of controllers’ supporting features is represented according to the level of support 
in which G1 indicates extremely low support and G4 denotes very strong support. G2 indicates 
medium support, but G3 only reveals strong support, where the characteristics evaluation score 
from G1 to G4. After that comes the comparison stage of Controllers regarding their Features for 
SD-IoT, finally, the controller weights were calculated. This model presented a novel controller 
selection approach for SD-IoT environments, based on the Analytical Network Process (ANDP) 
model, is evaluated in terms of delay, throughput, CPU utilization, and reliability. Figure 10 



illustrates the ANDP model for paired comparisons in selecting an SD-IoT controller. The figure 
represents the ranking model of the ANDP, comprising a features cluster (top one) and an 
alternatives cluster (bottom one). Additionally, a circular line indicates the interdependency among 
these features. 

 

 

Figure10. The ANDP model for controller selection in SD-IoT [21]. 

The proposed model was compared with previous benchmark schemes, namely AHP [23] and EB-
TOPSIS [24], through a series of experiments. Key Findings achieved that the proposed 
controller:  
- Reduces delay in various traffic scenarios.  

- Increases throughput while efficiently utilizing the CPU. 
- Exhibits enhanced reliability during link failure recovery. 

Jehad et.al. [25] Introduced ESCALB, a load-balancing scheme designed for multi-domain SDN-
enabled IoT networks (SD-IoT). Its main goal is to efficiently migrate switches to controllers with 
available resources in a dynamic manner. ESCALB uses a hierarchical model for a control plane 
consisting of multiple domain controllers (DCs) and a global control (GC) plane. The GC plane 
comprises four sub-modules as figure 11, including the Load Calculation Module (LCM) and ANP 
Module (ANPM), which monitor load status by receiving information from the Distributed Control 
Plane (DCP) and rank controllers based on CPU usage, Flow Requests Capacity FRC, memory 
utilization, and the number of attached switches. In addition, the ANP Module (ANPM) utilizes 
the Analytic Network Process (ANP) model to prioritize slave controllers in the DCP. ANPM 
employs a mathematical procedure with a 9-point scale matrix to rank controllers, where 1 
indicates equal importance and 9 signifies extreme significance. The Switches Migration Module 
(SMM) initiates switch migration to slave controllers if the master controller's load exceeds a 
predefined threshold. Flows Forwarding and Updating Module (FFUM) collaborates with ANPM 
and SMM to prioritize slave controllers, migrate switches, and forward flow requests to controllers 
with higher weights. 



 
Figure 11. Proposed framework for load balancing using ANP module with SD-IoT [25]. 

The primary objective of the GC plan is to optimize network performance and resource utilization 
by utilizing ANP-based ranking, switch migration, and load-balancing mechanisms. The proposed 
scheme was compared with previous benchmark schemes, namely SASLB [26], DLB [27], SCLB 
[28], and SMLB [29]. ESCALB's effectiveness resides in its adeptness at intelligently selecting 
the most appropriate controller for load distribution, resulting in enhanced performance within 
SDN environments. 

Table 2 outlines a comprehensive overview of studies pertaining to traffic load balancing and 
resilience, encompassing details regarding description, objectives, and traffic routing methods. In 
addition, Table 3 offers a comparative analysis of decision-making criteria and Implementation 
levels within the Data Plane and/or Control Plane. 

Table 2. Traffic Load Balancing and Traffic Resiliency: Proposals description, objectives, and Techniques Method 
Employed.  

Reference Proposal description Objectives Techniques  
Hong et. al. [11]  LBBSRT chooses the server 

characterized by minimum response 
time in order to provide services to 
the users. 

Enhancing the load balancing effect 
by reducing the server response 
time. 

Least 
Response 

Time Load 
Balancing 

André and 
Fernando [12] 

Rama controller framework is a 
promising approach to ensuring the 
fault tolerance of SDN controllers. 

Prevent the controller from 
becoming a single point of failure, 
which necessitates the integration of 
the switch state into the fault-
tolerant SDN framework. 

Fault tolerance 
 

Anees et. al. 
[15] 

Network traffic control mechanism 
achieves efficiency by reducing host 
overhead and preventing packet 
reordering. 

Improving Load Balancing and  
enhancing network efficiency by 
dynamically selecting the most 
suitable network interface for each 
traffic flow. 

Least 
Connection 

Load 
Balancing 

Hamza et al. 
[17] 

MTLB is an efficient load balancing 
scheme for managing the load 
distribution among distributed 
Software-Defined Networking 
(SDN) controllers. 

Employing a switch migration 
scheme to address load imbalance 
and prevent controller overload 
involves categorizing the load into 
multiple progressive tiers and 
dynamically adapting the threshold 
value. 

Clustering 



Chunlin et.al. 
[18] 

A novel dynamic controller 
placement method that focuses on 
optimizing both delay and load 
factors by improving the multi-
controller placement (LOCP) and 
ant colony algorithms. 

Efficiently determine the optimal 
locations for placing controllers 
within a network to solve the multi-
controller placement problem, 
enhancing the overall network 
service quality performance. 

Clustering 

Jehad and 
Byeong-hee [21] 

Optimal SDN controller selection is 
critical to ensure optimal network 
usage, leading to improved Quality 
of Service (QoS) in SD-IoT, which 
involves assessing its attributes and 
validating its performance within 
the SD-IoT environment. 

Enhancing throughput while 
efficiently utilizing the central 
processing unit (CPU) and 
minimizing recovery latency during 
network failures. Improving latency 
in both normal and heavy traffic 
scenarios 

Clustering 

Jehad et.al. [25]  A multi-criteria decision-making 
based slave controller selection 
strategy for SDN in IoT networks 
with dynamic switch migration. 

Demonstrating the problem of static 
slave controller assignment to 
ensure effective migration of SDN 
switches. 

Adaptive Load 
Balancing 

 

Table 3. Traffic Load Balancing and Traffic Resiliency: Decision-Making Criteria and Implementation in the Data 
Plane and /or Control Plane. 

Reference Control 
plane 

Data plane Decision-Making based on 

Hong et. al. [11]  
ü ü 

The controller selects the server with minimum 
or stable response time according to obtained 
server data. 

André and Fernando 
[12] ü  

Controller primary/backup Decisions and 
Coordination Service Decisions 

Anees et. al. [15] 
 ü enables dynamic interface assignment and traffic 

redirection based on OpenFlow rules. 
Hamza et al. [17] 

ü  
The dynamic threshold value can be changed 
depending on the average load status. 
 

Chunlin et.al. [18] 

ü  
Calculating the optimal placement of multiple 
controllers based on the network topology, 
traffic load, and available computational 
resources. 

Jehad and Byeong-hee 
[21] ü  

Calculate Controller Weights utilizing the all-
considered judgments of SD-IoT controllers' 
supporting features. 

Jehad et.al. [25] 

ü  
Monitors the control plane in real-time, 
acquiring load information to assess and 
prioritize slave controllers and ensure successful 
switch migration. 

 

3.2) Traffic Optimization and Path Selection 

A novel traffic-aware QoS control mechanism for SDN-based virtualized networks was introduced 
[30], based on the single rate three color marker (srTCM) proposed by the Internet Engineering 
Task Force (IETF) [31].  This mechanism combines srTCM (Single rate three color marker) with 
two novel global token buckets (srTCM+ GTB) to effectively meter and mark packets from each 
virtual network, ensuring QoS in IP networks. Initially, the mechanism employs srTCM, which is 



based on Differentiated Services (DiffServ) principles [32], to classify and manage network traffic. 
DiffServ enables the provision of low latency for critical network traffic, such as voice or 
streaming media, while offering simple best-effort service to non-critical services like web traffic 
or file transfers. By using srTCM, packets within a stream are metered and categorized into three 
traffic parameters and add two Token Buckets (TB). The three considered traffic parameters are 
committed information rate (CIR), committed burst size (CBS), and excess burst size (EBS), which 
are respectively marked as green, yellow, or red.  

IF packet size:  
                      < CBS, then packet marked green; packets can be forwarded immediately.  
                      <CBS & < EBS, then packet marked yellow; packets can be forwarded or dropped  
                        according to the link state.  
    Otherwise, then packet is marked red; packets will be dropped directly. 

Two Token Buckets (TB): A token is added to the C-bucket every 1/CIR s. 

If No. of Tokens in C-bucket > CBS, the extra token is added to E-bucket, then If No. of Tokens 
in E-bucket > EBS, then discard extra token as illustrated in figure 12. 

 
Figure 12. Token refill scenario of srTCM +GTB [30] 

The proposed  architecture of an autonomic managed network is illustrated in figure 13. A 
virtualization plane is introduced between the control plane and data plane to efficiently allocate 
the physical network based on the unique requirements of each virtual network. The virtual 
networks are categorized into different service levels using the differentiated services (DiffServ) 
approach. This involves color-marking packets according to the link status and inserting them into 
corresponding queues with different precedence using a weighted random early detection (WRED) 
queue [33]. 



 

Figure 13. The architecture of autonomic managed network [30]. 

An autonomic manager is responsible for monitoring, collecting, and analyzing traffic and resource 
usage of both virtual and physical networks. It then dynamically redistributes resources among all 
virtual networks through a resource manager. To optimize resource utilization during periods of 
light traffic in some virtual networks, the srTCM and marking algorithm are extended. Two 
additional buckets, known as the global C bucket and global E bucket, are introduced. Similar to 
private token buckets of each virtual network, these are not automatically refilled, and their depths 
are not fixed. This adaptive approach ensures efficient resource allocation and enhances overall 
network performance. The performance evaluation was conducted by analyzing the TCP and UDP 
performance of the proposed srTCM+ GTB method compared to CBBPM. The proposed approach 
employs a traffic-aware quality-of-service control mechanism to enhance the quality of service for 
virtual machines in software-defined networking-based virtualized networks. The findings 
demonstrate the efficacy of this mechanism because srTCM+ GTB is better able to control 
congestion and ensure that all virtual networks receive their fair share of bandwidth which 
guarantees their isolation. 

Junjie et.al. [34] Proposed a collaboration approach between MPTCP (Multipath TCP) and SR 
(Segment Routing) is aimed at addressing the resource consumption challenges in SDN-based 
Data Center Networks (DCNs) [35] [36]. The approach enables the simultaneous use of multiple 
paths for data transmission using MPTCP and provides a flexible and scalable mechanism for 
forwarding packets based on a segment identifier using Segment Routing (SR). In a large DCN or 
during a peak period, when a large flow arrives, it is divided into multiple subflows and transmitted 
using the MPTCP protocol. The SDN controller then allocates these subflows to specific 
transmission paths and maps each path into an SR path. This innovative method effectively 
manages traffic and reduces the demand for storage resources. The architecture proposed through 
the mentioned collaboration adopts a comprehensive four-layer approach for the DCN to ensure 
enhanced clarity and description. This four-layer architecture offers a comprehensive and well-
structured approach to designing the DCN, incorporating advanced technologies such as SR and 
MPTCP while leveraging the capabilities of SDN for efficient traffic management. MPTCP offers 
a traffic-splitting capability, enabling the division of a flow into multiple subflows. This ensures 
that the flow can be simultaneously transmitted via multiple paths between peers. MPTCP proves 
beneficial in increasing the throughput of DCNs while reducing the likelihood of network failures, 
packet losses, and delays. In case of unavailability or poor performance of a path, MPTCP allows 



the flow to be rerouted through an alternative path. MPTCP architecture comprises four essential 
components: path management, packet scheduling, subflow interface, and congestion control. 
Regarding the SR method, it operates using a series of segments as an ordered list of routing 
instructions for packets. SR necessitates Traffic Engineering (TE) decisions for the entire network. 
The transmission path is represented by two types of segments: node segments and adjacency 
segments. Node segments serve as unique identifiers for nodes within the network domain, and 
they possess global significance, enabling other nodes to transmit packets based on these 
identifications, often using Open Shortest Path First (OSPF) as the default protocol.  
On the other hand, adjacency segments represent node-local interfaces that differ from node 
segments and are locally significant. These segments facilitate the transmission of packets to 
specific adjacent nodes through the associated interfaces. 
A transmission example of MPTCP and SR is shown in figure 14. 

 
Figure 14. A transmission example of MPTCP and SR [34]. 

In the example, the controller selects three paths through the network for a packet to take. These 
paths are {A-B-E-G-H-J}, {A-D-G-J}, and {A-C-FG-I-J}. The SR technology then expresses 
these paths as a segment label list. The segment label list is a list of the segments that the packet 
must traverse in order to reach its destination. When the packet receives the segment label list from 
the controller, it follows the instructions in the list to complete the transmission process. The 
segment label list is a more efficient way to represent a path through the network than a traditional 
routing table. This is because the segment label list only includes the segments that the packet must 
traverse, while a routing table includes all of the possible paths through the network. As a result, 
the segment label list can be used to select the best path through the network for a packet, even if 
the network topology changes. In summary, the proposed MPTCP & SR showcases superior 
performance in terms of throughput maintenance and average link utilization under varying 
transmission demands. The dynamic path adjustment capability contributes to more efficient load 
balancing and response management, leading to more stable and improved network performance. 

Shengru et. al. [37] introduced a forwarding technique that's independent of protocols, efficient in 
bandwidth usage and saves flow-table space.  It utilizes POF-FIS, a protocol-oblivious forwarding 
instruction set. To implement POSR in an SDN network system, packet format is designed, and 
packet processing pipelines are developed to support unicast, multicast, and link failure recovery. 
Packet format design 
In consequence of the independent nature for POF protocol [38], the packet format design for 
POSR allows for a dedicated approach to accommodate the network scenario without the need to 
reuse existing protocol packet fields. The configuration of POSR packet header fields is illustrated 
in Figure 15.  



 
 

Figure 15. Header format design of POSR unicast 
packets [37] 

Figure 16. Header format design of POSR multicast 
packets [37] 

 
Specifically, the source routing header fields are introduced between the Ethernet and IP headers, 
and the Ethernet header Type field is defined as "0x0908" to signify a POSR packet. The Time-
to-live (TTL) field indicates the remaining hops of the packet, while the Port field stores the 
designated output port on the switch for a given hop. To encode the routing path, a POSR packet 
incorporates multiple Port fields, where each intermediate switch extracts the outermost Port field 
to determine the packet's designated output port. For enabling POSR-based multicast, the POSR 
header's Port field is substituted with a VPort field, as depicted in Figure 16. The VPort field 
consists of multiple bits, with the first bit serving as the Fork Flag, indicating whether the 
corresponding switch acts as a fork node on the packet's multicast tree. The remaining bits in the 
VPort field represent the Group Label, which is assigned for each active multicast session. A fork 
node signifies a switch from which multiple branches originate within a multicast tree.  
 
POSR Packet Processing Procedure 
Upon the arrival of the first packet of a flow at the ingress POF switch, the switch sends a PacketIn 
message to the controller as no flow entry has been set up for the flow. The controller then 
calculates the flow path and sets up a flow entry in the ingress switch, which directs the switch to 
encode path information in the flow's packets using the POSR format. Given that the packet 
processing procedure for all POSR packets is identical in any intermediate switch, including 
destination switches, flow entries can be installed in all POF switches during network initialization, 
allowing POSR packets to share them. 
 
FAST LINK FAILURE RECOVERY WITH POSR 
To enable fast failover (FF) in POF switches, two entries are included in each FF group table to 
monitor switch port status and determine the backup path segment based on the packet's output 
port. The first entry in the FF group table forwards packets normally when the output port is up. If 
the output port is down, the second entry initiates POSR-based link failure recovery using the 
routing instructions of the backup path segment to replace those of the broken link in the headers 
of affected POSR packets, as illustrated in figure 17.  

 
Figure. 17. POSR-based fast link failure recovery [37]. 



By leveraging the FF group table in POF switches, the system proactively monitors switch port 
status and identifies any port failures quickly. This approach enables affected packets to be swiftly 
rerouted through the backup path segment, minimizing network disruptions, and enhancing overall 
reliability in case of link failures. As the data transfer rate increases, OF-SP experiences a faster 
escalation in packet loss. The findings of this research suggest that POSR has the potential to be a 
viable solution for addressing the scalability challenges of SDN. POSR's ability to provide efficient 
source routing without relying on specific protocols allows for greater flexibility and adaptability, 
making it a promising option for large-scale SDN deployments.  
 
Conserving energy is crucial not just from a financial and ecological standpoint, but also for 
ensuring the sustainable expansion of the Internet. This is because the delivery of power to and the 
removal of heat from massive data centers present significant challenges [39]. 

[40] The academic work introduced a heuristic scheme named Exact Path Control (EPC) designed 
for the incremental deployment of SDN switches in hybrid SDNs. EPC involves flow-level explicit 
path control to power off redundant links and switches in the network, thereby conserving energy.  

EPC algorithm procedures  

The algorithm functions as follows: Firstly, it sorts all flows based on priority and then reroutes 
them one by one until all requests are arranged. Then, it calculates the energy savings by shutting 
down the active edges and switches. Additionally, it sorts all links according to traffic volume in 
ascending order and judges whether each link and switch can be turned off. It also checks whether 
a specific link can be powered off. The algorithm must ensure that the forwarding path's delay does 
not exceed the maximum delay and that the volume on each link is within its capacity limit. To 
enhance Network Congestion Avoidance (NCA), they proposed upgrading the least key nodes 
incrementally that all flows must pass through. This is achieved by SDN switches rerouting packets 
based on multiple MPLS labels that contain forwarding port numbers of switches on the route. 
Fine-grained flow scheduling is crucial for energy conservation, and encapsulating MPLS labels 
can help reroute flows and power off idle links and switches. When selecting switches to update, 
we consider the topologies' structure. Two optimization techniques have been identified: (1) 
isolating nodes without flows passing through them and retaining nodes with flows, and (2) 
separating specific sub-topologies from the original topology and selecting key nodes in the sub-
topologies as SDN switches. 

The provided academic content demonstrates an example of utilizing MPLS labels to achieve 
energy savings in a network as shown in figure 18. The scenario involves two flows, f1 from h1 to 
h3, and f2 from h2 to h3. The controller selects switch s2 to install flow entries for rerouting flow 
f1. Upon entering SDN switch s2, packets of flow f1 are encapsulated with 3 MPLS labels, each 
indicating a forwarding port along its route. As the packets traverse through the switch, they pop 
up one MPLS label at a time, determining their forwarding port. This rerouting results in a new 
path for flow f1, leading to energy savings by shutting down switches s3, s4, and the corresponding 
links. 

 



 
Figure 18. An example of Using MPLS label to achieve network energy saving [40] 

The novel aspect of this approach is that, unlike traditional network MPLS, there is no need to 
maintain a path state in the forwarding path beyond the ingress node. This is because packets are 
now routed based on the list of labels they carry, enabling a more efficient and energy-saving 
routing strategy. 

Wu et. al. addressed two critical issues in multi-path algorithms: scheduling efficiency and end-
to-end delay fluctuations, which can impact video transmission quality. To tackle these challenges 
in media streaming applications, a dynamic and adaptive multi-path routing algorithm (DAMR) is 
proposed, utilizing SDN for centralized routing computations and real-time network state updates 
[41]. The key module of DAMR is the routing module, responsible for aggregating bandwidth 
based on monitoring information to ensure reliable transmission and avoid data packet loss due to 
link failures or congestion. By dynamically allocating data flows to multiple effective paths 
between nodes, DAMR optimizes network resource utilization, reducing congestion, packet loss 
rates, and end-to-end delays.  
Three main algorithms constitute DAMR: 

The network topology update algorithm optimizes the network topology and updates link 
information. The network routing algorithm handles packets in packets sent by OpenFlow switches 
and makes forwarding decisions based on routing decisions, acquiring QoS parameters from the 
monitor module for optimal path calculations. The packet loss rate algorithm ensures real-time 
measurement through periodic updates and calculates packet loss rates for each flow to determine 
optimal routes. The flowchart designed for the proposed algorithm is shown in Figure 19. Upon 
program initiation, the controller first checks for an optimal path to find, periodically querying the 
QoS parameters of the underlying network at 5-second intervals from the perspective of 
OpenvSwitch. When a packet reaches the controller, it calculates all accessible paths and their 
available bandwidths. The path with the maximum available bandwidth becomes the flow 



transmission path. If this path meets the delay constraint, it becomes the optimal path, and video 
streaming flows remain unchanged. However, if the path fails to meet the delay constraint, the 
controller utilizes the DAMR algorithm to find the optimal path. If no such optimal path exists due 
to unmet delay constraints, no rerouting occurs. Nevertheless, when an optimal path is found, the 
controller acquires QoS information from the monitor module and calculates link weights between 
node pairs. The link-state status information of each link on the flow's path is then updated. By 
utilizing the topology management module from the floodlight controller, link-state information, 
including connected nodes and ports, is stored in clusters. By traversing each node and its 
connected nodes, the full path from the source to the destination node is obtained, ensuring the 
optimal path that meets the delay constraint is achieved. 

 
Figure 19. The flowchart design of the DAMR algorithm  [41] 

DAMR algorithm is compared with a single-path algorithm (e.g., Dijkstra and Bellman-Ford) that 
selects a subset of paths for video streaming based on additive cost properties like hop counts. In 
contrast, the ECMP algorithm [42]distributes traffic equally among multiple equal-cost paths, 
involving all links in the network. Experimental results show DAMR overcomes computational 
overhead, effectively adapting to dynamic network changes, and improving link utilization and 
user service quality. DAMR utilizes OpenFlow centralized control to optimize resource allocation 
and aggregate bandwidth resources by employing optimization theory. 

Muteb and Abdelmounaam presented POX-PLUS [43] is an upgraded version of the commonly 
used POX controller in SDN networks, which includes a novel routing module called DRAPSP 
(Dynamic Routing based on All Pairs Shortest Paths). DRAPSP is responsible for calculating and 
effectively managing the shortest routes between nodes in the SDN. POX-PLUS consists of three 
primary components as shown in figure 20:  

• DR-APSP: This module is the main routing component that operates on our dynamic routing 
all-pairs shortest path (APSP) algorithm [44] 
• POX Controller is the original POX controller that has been modified to take on the additional 
responsibility of updating DR-APSP with information regarding the initial topology, as well as 
any subsequent modifications to the network.  
• Data Structures are utilized to store information related to the topology and its shortest paths. 



These data structures comprise the Topology Graph, Hosts, and a forest of shortest paths trees 
(SPT). 

 

Figure 20. POX-PLUS Architecture [43].  

The controller detects any link event in the network utilizing link deletion and link insertion 
algorithms. When detecting a link deletion, DR-APSP starts a loop over all shortest path trees 
(SPTs), that consists of two main phases. In the first phase, the algorithm identifies the affected 
switches in each SPT, and subsequently removes affected flows that selected the deleted edge, for 
each of the affected switches. Then the controller will apply a fresh flow rule in response to 
subsequent requests. In the second phase update the current SPT for future requests using APSP 
approach. The Link Insertion algorithm is triggered by a link insertion event, following which it 
begins a loop over all vertices. The loop comprises two primary steps: the first step entails updating 
the current SPT, while the second step involves removing impacted flows from affected switches. 
The measured performance parameters include: 

"init time" for initializing flow tables at all switches, measuring the duration of data packet 
transmission between every host pair in the network. "Add time" indicates the time taken by an 
application to transmit a data packet between any two hosts after incorporating new network links. 
"Delete time" represents the time required for an application to send a data packet between any 
two hosts following the removal of network links. "Selected paths time" measures the duration 
taken by an application to transmit a data packet between any two hosts after configuring flow 
tables at all switches. 
DR-APSP module is compared to the three routing schemes offered by the POX controller (l2 
learning, l2 multi, and l3 learning). DR-APSP is the sole method that preserves the shortest paths 
and flow rule tables without recomputing paths. The research shows that l2 learning and l3 learning 
involve a high cost due to a short idle time for flows in flow tables, which is necessary for fast 
recovery. 
Yi-Ren et. al. [45] provided a solution that helps to solve a traffic engineering (TE) problem of 
SDN in terms of throughput and delay. This solution developed a reinforcement learning routing 
algorithm (RL-Routing) which predicts the future behaviour of the underlying network using an 
RL agent to learn the optimal routing paths in a network. The RL agent interacts with the network 
by selecting actions (routing paths) based on the current state of the network and suggests better 
routing paths between switches. The RL-Routing application comprises two main modules are 



shown in figure 21. The first module, the Network Monitoring Module (NMM), utilizes both 
passive and active network measurements to collect crucial information about network devices, 
including link delay, throughput, and port speed. This data is utilized to represent states and 
compute rewards. The second module, known as the Action Translator Module (ATM), converts 
the selected action by the agent into a series of appropriate OpenFlow messages.  

 
Figure 21. The components of RL-Routing [45]. 

These messages are employed to update the flow tables of switches when configuring a new path. 
To prevent Packet-In messages from being sent to the controller, the ATM transmits these messages 
from the last switch of the path to the first switch. Finally, the old rules in the switches of the 
previous path are deleted. RL-Routing has the potential to address scalability issues in routing by 
automating the process of path selection and reducing the need for manual configuration and 
maintenance. However, the effectiveness of RL-Routing in addressing scalability issues can 
depend on various factors, such as the size and complexity of the network and the performance 
metrics being evaluated. The performance of RL-Routing was evaluated on three well-known 
network topologies: Fat-tree, NSF Network (NSFNet), and Advanced Research Projects Agency 
Network (ARPANet), comparing RL-Routing with two widely used baseline solutions: Open 
Shortest Path First (OSPF) and Least Loaded routing algorithm (LL). The evaluation metrics are 
the reward function, which is a score computed using network throughput and delay, and the 
utilization rate, which is calculated in the destination switch. The reward function can be adjusted 
to optimize either upward or downward network throughput. Gururaj et.al. introduced the 
resource-efficient multicast tree construction model (REMTC) [46] that uses Dijkstra’s Shortest 
Path algorithm for initial tree formation, identifies a multicast path, and processes the Shortest 
Path Tree to reduce the overall hop count and path cost. Aims to reduce tree alteration using more 
common paths to reach the devices by tree optimization algorithm which enables the dynamic join 
and leaves of participating devices. In this model, the multicast tree construction algorithm 
continuously monitors the network and user requirements and adapts the multicast tree 
accordingly. For example, if a link becomes congested or unavailable, the algorithm can 
dynamically reroute traffic to other available links to maximize network efficiency and meet user 
requirements. REMTC model seeks to construct a tree comprised of nodes and links with the 



lowest possible values for both total path cost and total hop count. The REMTC algorithm is 
designed to identify the optimal values for both of these factors during the initial construction of 
the multicast tree. The trunk path that connects the maximum number of end devices in the shortest 
path tree (SPT) is then selected as it improves route stability. The construction of the multicast tree 
utilizes level information to enhance resource utilization. The tree optimization algorithm works 
as follows, the collection of participant information is performed by the SDN controller during the 
establishment of a session between end devices and a server. The dynamic joining/leaving of the 
participants from/to the multicast group is managed through Session Initiation Protocol (SIP) and 
Session Description Protocol (SDP) messages [47]. To evaluate the bandwidth availability, the 
SDN controller centrally computes the link cost based on switch statistics gathered at regular 
intervals, including the number of packets transmitted and received by each switch port. Dijkstra's 
shortest-path tree algorithm uses this link metric to construct the shortest-path tree, which is then 
utilized to determine the trunk path and level formation. The performance of REMTC was 
evaluated by comparing it with SPT, ST, BAERA [48], and OBSTA [49] for the following metrics:  

- The "number of links" refers to the edges that are utilized in the multicast tree to forward the 
multicast data from the source node to the participating nodes.  
- "Processing Latency" represents the amount of time it takes for the algorithm to construct a 
multicast tree for the set of participants.  
- The "Rerouting Cost" is the delay that is incurred when constructing or rearranging the 
multicast tree due to a dynamic join or leave of a participant. 

The REMTC model is capable of maintaining stable bandwidth consumption during dynamic join 
and leave events, which is not achieved by ST and SPT methods. The REMTC model only modifies 
the multicast tree to accommodate dynamic participants, thereby avoiding changes to the 
forwarding table of SDN switches and achieving multicast tree stability. 

Majda et.al. presented a new model called Video Streaming Adaptive QoS Routing with Resource 
Reservation (VQoSRR) for Software Defined Networking (SDN) networks [50]. This model is 
designed to enhance the quality of video streaming services in SDN networks by offering adaptive 
QoS routing and resource reservation. The VQoSRR model employs a centralized management 
architecture to offer adaptive QoS routing and resource reservation tailored to video streaming 
services. By utilizing a feedback mechanism, the VQoSRR model dynamically adjusts QoS 
routing according to network conditions. Network state information, including bandwidth 
availability, delay, and packet loss, is considered to determine the optimal path for video streaming 
traffic. Furthermore, the model ensures resource reservations to guarantee sufficient resources for 
video streaming services. To achieve this, the VQoSRR model divides the network into multiple 
virtual networks and allocates resources to each one. It employs a bandwidth reservation 
mechanism to secure the required bandwidth for video streaming traffic and a packet scheduling 
mechanism to prioritize video streaming traffic over other types of traffic. Upon initiation of a new 
video stream flow by the server, the switch sends the first packet copy to the controller's QoS 
routing manager for determining the routing path. The VQoSRR employs two routing paths to 
balance between frequent dynamic network state updates and reduced routing computation 
overheads. One path is used as the primary route for the current flow, while the other serves as an 



alternative path for potential rerouting. These two paths are selected based on a weighted graph, 
where link characteristics such as packet loss rate and available bandwidth are determined using 
QoS routing manager algorithms with the aid of topology manager and statistics collector modules. 
In addition, this study introduced the Dynamic Traffic Rerouting Algorithm (DR-RA), which 
adapts to network conditions to ensure video QoS compliance, ultimately enhancing video quality. 
DR-RA updates the route's cache and reroutes traffic using alternative paths or generating new 
ones. The algorithm operates periodically, reading network statistics at predefined intervals. In 
case the current path violates the flow's QoS requirements, its flow entries are deleted from the 
switch, and an alternative route is examined. If the alternative path also fails to meet quality 
requirements, the algorithm calculates another path. Employing the alternative path offers several 
advantages: 

- Reduces time spent recalculating the routing path by utilizing the alternative route instead 
of rerunning the routing algorithm. 

- Improves response times for flow installation. 
- Enhances network resilience by providing two paths, which can be beneficial in the event 

of a path failure. 

Experiments showed that VQoSRR improved user perception of video quality and offered better 
control over routing and resource allocation and the videos delivered with DR-RA had higher 
quality than those without DR-RA or VQoS-RR. 

Table 4 outlines a comprehensive overview of studies pertaining to Traffic Optimization and Path 
Selection, encompassing details regarding description, objectives, and traffic routing methods. In 
addition, Table 5 offers a comparative analysis of decision-making criteria and Implementation 
levels within the Data Plane and/or Control Plane. 

Table 4. Traffic Optimization and Path Selection: Proposals description, Objectives, and Techniques method 
Employed. 

Reference Proposal description Objectives Techniques 
Jiameng and 
Sang-Hwa [30] 

srTCM+ GTB is a traffic-aware 
quality-of-service control 
mechanism for software-defined 
networking-based virtualized 
networks. 

To provide a traffic-aware 
quality-of-service control 
mechanism for software-
defined networking-based 
virtualized networks. 

Traffic-Aware Multi-
Path Routing with 
(QoS)-based Routing 

Junjie et.al. 
[34] 

Develop a collaborative traffic 
transmission mechanism 
utilizing MPTCP and SR to 
address resource consumption 
issues in an SDN-based DCN. 

Providing a better traffic 
management solution, which is 
still effective in DCNs’ peak 
hours. 
 

Hybrid Multi-Path 
Routing 
 

Shengru et. al. 
[37] 

Design protocol oblivious source 
routing (POSR) by proposing a 
protocol-agnostic, bandwidth-
optimized, and flow-table-
conserving packet forwarding 
approach. 

Addressing the issue of 
scalability in SDN to 
significantly mitigate flow-table 
consumption, minimize path 
setup latency, and expedite link 
failure recovery. 

Source-Based Multi-
Path Routing 

Xuya et. al. [40] Introduces a heuristic approach 
for the gradual deployment of 
SDN switches in hybrid SDNs to 
intelligently power off redundant 

Attain energy efficiency 
through the proficient rerouting 
of flows and the optimal 

Traffic-Aware Multi-
Path Routing with 
Energy-Efficient 



links and switches in the network 
to effectively conserve energy 
resources. 

shutdown of idle links and 
switches whenever feasible. 

Wu et. al. [41] DAMR is a dynamic and 
adaptive multi-path routing 
algorithm that addresses packet 
loss, time delay, and bandwidth 
constraints in multimedia 
applications through centralized 
routing computations and real-
time network state updates. 

Improving network 
performance by dynamically 
selecting multiple paths while 
considering network congestion 
and link quality. 

Dynamic Multi-Path 
Routing with  
(QoS)-based Routing 

Muteb and 
Abdelmounaam 
[43] 

DR-APSP is an efficient routing 
module devised to elevate the 
POX controller version to POX-
PLUS, thereby facilitating the 
computation and perpetual 
maintenance of inter-node paths 
within the Software-Defined 
Networking (SDN) framework. 

Preserving the integrity of the 
shortest paths and flow rule 
tables following an update 
operation, obviating the 
necessity of recomputing paths. 

Dynamic Routing 

Yi-Ren et. al. 
[45] 

RL-Routing represents a 
proficient approach to routing 
within SDN, employing 
Reinforcement Learning (RL) to 
predict the future behaviour of 
the underlying network and 
suggests optimal routing paths 
between switches. 

Mitigate scalability challenges 
in routing through the 
automation of path selection, 
thereby minimizing the reliance 
on manual configuration and 
upkeep. 

Machine Learning-
based Routing 

Gururaj et.al. 
[46] 

The REMTC algorithm is a 
resource-efficient multicast tree 
construction model that 
constructs a reliable and scalable 
multicast tree for multiple 
receivers. This, in turn, 
optimizes resource consumption 
and enhances bandwidth 
efficiency. 

Improving network resources 
utilization and communication 
through Constructing a stable 
multicast tree with more 
common paths to reach 
multicast participants. 

Traffic Engineering 

Majda et.al. 
[50] 

VQoSRR is a novel model 
utilizing queue mechanisms to 
meet bandwidth guarantees for 
video traffic, while also offering 
two routing paths between the 
source and destination to cater to 
multiple QoE constraints. 

Improving the quality of video 
streaming services in SDN 
networks by providing adaptive 
QoS routing and resource 
reservation. 

Quality of Service 
(QoS)-based Routing 

 

 

 

 

 

 



Table 5. Traffic Optimization and Path Selection: Decision-Making Criteria and Implementation in the Data Plane 
and /or Control Plane. 

Reference Control 
plane 

Data plane Decision Making based on 

Jiameng and Sang-
Hwa [30] ü 

 

The traffic load, bandwidth and latency of each 
virtual machine. 

Junjie et.al. [34] 

ü ü 

Dividing the main flow into mul;ple subflows, and 
transmi>ng using MPTCP, while implemen;ng an 
ordered list of rou;ng instruc;ons for packets 
using SR. 

Shengru et. al. [37] 
 ü 

Redesign the source packet header format and 
design a packet processing pipeline that is 
op;mized for unicast and mul;cast traffic. 

Xuya et. al. [40] 
 

ü 

Sor;ng all flows based on their priority and then 
sequen;ally rerou;ng them un;l all requests are 
organized. This entails selec;ng SDN switches for 
deployment based on flow requirements and the 
associated switch costs. 

Wu et. al. [41] 

ü ü 
Calcula;ng the aggregated bandwidth using real-
;me monitoring informa;on and a periodic 
scheduling strategy, taking into considera;on both 
congested and uncongested scenarios. 

Muteb and 
Abdelmounaam 
[43] ü  

Detec;on of network link events, which 
subsequently trigger the removal of all impacted 
and obsolete flow rules that do not contribute to 
any of the established shortest paths following the 
update opera;on. 

Yi-Ren et. al. [45] 

ü  

The RL agent learns to select paths that op;mize 
network performance metrics, such as latency, 
throughput, and packet loss. The agent an;cipates 
future network behaviour to propose improved 
rou;ng paths between switches. 

Gururaj et.al. [46] 
ü ü During the tree forma;on phase, the algorithm 

calculates the shortest path based on link cost. 
Majda et.al. [50] 

ü ü 
Dividing the network into mul;ple virtual 
networks and alloca;ng resources to each virtual 
network. A bandwidth reserva;on mechanism 
reserves the required bandwidth for video 
streaming traffic, and a packet scheduling 
mechanism priori;zes video streaming traffic over 
other traffic types. 

 

4) Evaluation Tools and Performance Results  

4.1) Evaluation Tools  

Table 6 provides a comprehensive overview of simulation model tools, datasets, and metrics used 
to evaluate the proposed research in traffic load balancing and traffic resilience. The table is 



organized by simulation model tool, followed by dataset and metrics [51]. 
 
Table 6. Summarizes the simulation model tools, dataset and metrics used to evaluate traffic load balancing and traffic 
resilience. 

Reference simulation model tools Dataset Measured metrics 
Hong et. al. 
[11]  

Mininet [52], Floodlight 
controller [53] and 
OpenvSwitch [54]. 

12:30 clients Server response ;me, CPU 
u;liza;on and Memory 
u;liza;on. 

André and 
Fernando [12] 

Mininet, OpenvSwitch, 
ZooKeeper 3.4.8 (REF) and 
iperf. 
 

Two controllers and 2:64 
switches 

Throughput and failover ;me. 

Anees et. al. 
[15] 

Mininet, GNS3, Ryu controller, 
OpenvSwitch and Linux traffic 
control tool ‘tc’. 
 

single network interface 
and multiple network 
interfaces 

Throughput and file download 
;me vs different file sizes. 
 

Hamza et al. 
[17] 

Mininet and Floodlight 
controller [53] 

Two real network 
topologies, Cernet: 36 
nodes & 53 links. and 
DFN:58 nodes & 87 
links. 

Throughput - Packet loss - 
Response ;me - Migra;on 
cost Overhead. 
 

Chunlin et.al. 
[18] 

Mininet, Ryu controller [53] Internet2 OS3E: 34 nodes 
and 42 links. 
Janetbackbon: 22 nodes 
and 35 links. 

Controller-to- switch delay - 
Propaga;on delay between 
controllers - Average task 
comple;on ;me – Load 
balancing degree. 

Jehad and 
Byeong-hee 
[21] 

Mininet and OpenvSwitch linear topology up to 500 
sensor nodes 

Throughput - E2E Delay – CPU 
u;liza;on - recovery latency in 
case of link failure 

Jehad et.al. 
[25] 

Mininet, ONOS controller [55], 
iperf [56]traffic generation. 

Network Topology 
DFN: 58 switches, 87 
links. OS3E: 34 switches, 
42 links. RedIris: 19 
switches, 32 links. 
Interoute:110 switches, 
149 links. Abilene: 11 
switches ,1 link. 

E2E latency - communica;on 
cost - load curve for 
controllers- Migra;on ;me - 
Response ;me - CPU 
u;liza;on – Jain’s fairness 
index (JFI). 
 

 

Table 7 presents a comprehensive overview of simulation model tools, datasets, and metrics 
utilized for evaluating the proposed research in traffic optimization and path selection. The table 
is organized based on the simulation model tool, followed by the dataset and metrics. 

Table 7. Summarizes the simulation model tools, dataset and metrics used to evaluate traffic optimization and path 
selection. 

Reference Simulation model tools Dataset Measured metrics 
Jiameng and 
Sang-Hwa [30] 

MiniNet, OVX virtualization 
platform and iperf 
 

TCP and UDP 
performance for randomly 
three virtual networks 

TCP & UDP throughputs and 
data arrival rate 

Junjie et.al. 
[34] 

NS-3.26 [57] 4k fat tree topology with 
20 switches and 64 hosts 

Throughput, average link 
utilization 

Shengru et. al. 
[37] 

POF switches, POF controller 
and iPerf. 

14 POF switches Throughput, Path Setup Latency, 
Packet Loss Ratio for Link 



Failure and Average Failure 
Recovery Time 

Xuya et. al. [40]  ISP 1755 and the ISP 
3967 network topologies 
[37,38] 

Energy saving ratio – Number of 
controlled flow - Upgrading cost 

Wu et. al. [41] Mininet, Foodlight1.2 
controller and OpenvSwitch 
 

Custom network topology 
with 100 Mbps for all 
links. 

Throughput -Time delay – Packet 
loss rate  

Muteb and 
Abdelmounaam 
[43] 

Mininet, POX controller [55] 
 

SYNTH1: 100 switches, 
11 hosts, and 129 
randomly generated links. 
AS: 100 switches, 2 
hosts, and 205 
randomly generated links. 
 

CPU time, init time, add time, 
delete time and deleted paths 
time. 

Yi-Ren et. al. 
[45] 

Mininet, Ryu controller 
 

Fat-tree, NSFNet, and 
ARPANet network 
topologies 
 

Reward is a score computed - 
Utilization rate is calculated in 
the destination switch 

Gururaj et.al. 
[46] 

Mininet 250, 500, 750,1000,2000 
and 3000 nodes with 
10,25,50,75 and 100  
Destinations 
 

number of links, processing 
latency and rerouting cost 

Majda et.al. 
[50] 

Mininet, Floodlight controller 
and Iperf 

Three video types:  
Video 1, SD, Video 2, HD 
And Video 3, HD 
 
 

Structural Similarity Index Metric 
(SSIM), Mean Opinion Score 
(MOS) and Video Multimethod 
Assessment Fusion (VMAF)  
 

 

4.2) Performance results analysis 

This section presents a comprehensive overview of the compared schemes, demonstrated results, 
and drawbacks and limitations of the proposed traffic load balancing & traffic resilience solution 
and traffic optimization and path selection solution as shown in table 8 and table 9 respectively. 

Table 8. Describes the demonstrated results, and drawbacks of the proposed traffic load balancing and traffic 
resilience solution. 

Reference Compared 
with 

The demonstrated results Drawbacks& limitations 

Hong et. al. 
[11]  

Round Robin, 
Random 

LBBSRT has significant advantages 
compared to other schemes in terms of 
the overall response 9mes and achieves a 
much be<er effect of load balancing. 
Overcomes the drawbacks of tradi9onal 
methods, including high cost, low 
reliability, and poor extensibility. 

A slight difference in memory 
u9liza9on at 50% and CPU u9liza9on 
at 75% for the servers that had been 
experimented. 
Using a server response 9me as the 
main metric for load balancing might 
not be universally suitable for all 
network environments and 
applica9ons. 

André and 
Fernando [12] 

Ravana Rama, a resilient SDN controller plaPorm, 
offers comparable robustness as Ravana, 
rather, it performed be<er throughput, 
ensuring fault tolerance without 

Network overhead due to increased 
network message exchanges. Need 
to evaluate the impact of network 
latency. 



necessita9ng modifica9ons to switches or 
the OpenFlow protocol. 

Anees et. al. 
[15] 

MPTCP 
approach and 
tradi6onal 
WRR, RR and 
MBW 
approach. 

a significant 55% increase in achieved 
throughput compared to the tradi9onal 
single network approach, surpassing the 
performance of Mul9path TCP (MPTCP) 
by 10%. This improvement can be 
a<ributed to the Weighted Round Robin 
(WRR) method, which allocates TCP flows 
based on computed link weights, 
resul9ng in be<er performance than 
MPTCP when using a single network 
interface. 

Network Dependency: 
Any network failures or 
communica9on issues between the 
end hosts and the controller could 
disrupt traffic control and lead to 
service interrup9ons due to the 
proposed mechanism based on the 
external network interfaces 
modifica9on of the data plane 
switch. 

Hamza et al. 
[17] 

DDS, SMDM, 
EASM [ 

The MTLB scheme stands out among all 
other evaluated schemes with its high 
average throughput. 
It also achieves the lowest average 
packet delay, outperforming SMDM and 
EASM. 
MTLB scheme demonstrates the lowest 
migra9on cost, packet loss and 
communica9on overhead 

- Further studies are required to 
precisely determine the op9mal 
intervals and iden9fy efficiency 
levels. 
- The current load distribu9on 
operates reac9vely, triggered only 
when thresholds are exceeded, 
poten9ally resul9ng in spikes in 
controller load and performance 
degrada9on. 
- Addi9onally, the scheme does not 
consider the variability in flow 
processing 9mes, where certain 
flows demand more processing than 
others, leading to uneven load 
distribu9on. 

Chunlin et.al. 
[18] 

K-means, SA 
and ECMP. 
LBRA, CARA 
and SCA 

- The improvement of LOCP algorithm 
slightly outperforms in propaga9on delay, 
queuing delay, and load balancing degree 
in large-scale networks, resul9ng in an 
average improvement of 18.36% in load 
balancing while ensuring a lower 
propaga9on delay and queuing delay. 
-The average user comple9on delay 
growth rate of the HACA improved 
algorithm is lower than other algorithms, 
including 50.39% lower than that of the 
LBRA and 32.29% lower than that of the 
SCA algorithm. 

- Consider more metrics to be 
evaluated like network throughput. - 
- The experimental setup lacks 
considera9on for crucial factors such 
as security concerns, the influence of 
mobile devices' mo9on trajectory, 
and the task priority of mobile 
devices on MEC servers. 
- An implementa9on in the case of 
network failures is required to 
evaluate the reliability of algorithms' 
improvement. 
 

Jehad and 
Byeong-hee 
[21] 

AHP and EB-
TOPSIS 

The results show that the proposed 
controller outperforms AHP and EB-
TOPSIS strategies in terms of delay 
reduc9on in flow request management 
and load balancing features.  
The proposed controller maintains a 
consistent throughput, exhibits a faster 
start, and demonstrates be<er CPU 
u9liza9on, even with increased traffic. 
The recovery latency 9me of the 
proposed controller is smaller than that 

Focusing on controller selec9on may 
limit the applicability of the scheme 
to a specific aspect of SD-IoT, and it 
may not address other important 
aspects such as security or energy 
efficiency. 



of the other strategies in case of link 
failures. 

Jehad et.al. 
[25] 

SASLB, DLB, 
SCLB and 
SMLB 
 

The response 9me results indicate 
ESCALB's efficacy, a<ributed to its 
efficient slave controller selec9on. 
ESCALB consistently outperforms other 
schemes in terms of end-to-end (E2E) 
latency for all network topologies. On the 
other hand, SASLB demonstrates lower 
communica9on costs but suffers from 
uneven packet distribu9on among SDN 
controllers, unlike ESCALB. 

With a rising number of nodes and 
links in the network of the five 
topologies, the JFI, is becoming 
lower. However, ESCALB strategy 
preserves it as near to 1 as possible, 
it may cause ineffec9ve packet 
distribu9on among controllers. 
ESCALB did not achieve op9mal CPU 
u9liza9on 

 

Table 9. Describes the demonstrated results, and drawbacks of the proposed traffic optimization and path selection 
solution. 

Reference Compared 
with 

The demonstrated results Drawbacks& Limitations 

Jiameng and 
Sang-Hwa [30] 

CBBPM - TCP throughput achieves significant 
improvements in VN1 (160%), VN2 
(36%), and VN3 (17%). 

- VN1 shows 30%-100% better UDP 
throughput using the proposed 
srTCM+ GTB compared to CBBPM. 
Similarly, VN2 and VN3 experience 
approximately 4%-25% improvements 
with proposed srTCM+ GTB over 
CBBPM. 

- Packet loss demonstrates the superior 
performance of srTCM+ GTB. 

- Sensitive to network latency. 
- Difficult to scale to large networks. 
- It is not as well-documented as 
some other bandwidth management 
solutions. 

Junjie et.al. 
[34] 

SingleTCP 
and MPTCP 

Proposed MPTCP & SR demonstrated a 
positive correlation with increasing 
transmission demand, outperforming 
SingleTCP and MPTCP, which showed 
slower increases and throughput 
reduction, respectively. 
the proposed method demonstrated 
higher average link utilization compared 
to MPTCP, achieved through dynamic 
path adjustment, leading to better load 
distribution and reduced delays. 

Increased overhead by increasing the 
packet header size. Need a Multi-
controller implementation ensures 
high scalability for DCNs. 

Shengru et. al. 
[37] 

Traditional 
OpenFlow-
based OF-
SP. 
 

- - Achieves 100% receiving throughput 
with fewer flow entries. 

- - The ability to share flow entries on 
intermediate switches reduces the 
number of flow entries required. 

- - Achieves shorter path setup latency, 
especially under higher traffic loads. 

- - Outperforms OF-SP in terms of packet 
loss ratio. 

- Achieves shorter average failure 
recovery time than OpenFlow. 

- Improve the performance of POF 
Switch to make process packets 
more efficient and work smoothly 
for switches equipped with 10GbE 
NICs. 

- May increase SDN management 
complexity for network admins, 
and introduce computational or 
memory overhead, affecting SDN 
performance. 

  
Xuya et. al. [40] PLSP and 

EA-FA. 
- EPC achieves effective control over 

95% of flows with only 10% of the 
upgrading cost, saving an additional 

Focusing only on the energy-
saving aspect of hybrid SDN 
networks, it may not provide a 



10% of total power consumption 
compared to existing solutions. 

- The EPC consistently outperforms both 
PLSP and EA-FA in energy-saving 
ratio. 

comprehensive analysis of all the 
factors that affect the performance 
of these networks. 

Wu et. al. [41]  - DAMR outperforms ECMP and single-
path methods in congested scenarios. 

- DAMR provides smooth, jitter-free 
performance, increased bandwidth, and 
improved system throughput. 

- 35%:70% improvement in quality-of-
service with DAMR. 

- The primary emphasis is on 
unicast algorithms to ensure end-
to-end Quality of Service (QoS) 
while not addressing multicast 
algorithms. 

- Extend the research to incorporate 
varying priorities for different 
flows, including prioritizing 
specific flows and implementing 
diverse QoS strategies to meet 
bandwidth or delay constraints. 

Muteb and 
Abdelmounaam 
[43] 

l2 learning, 
l2 multi, and 
l3 learning 

DR-APSP outperforms other approaches 
in terms of speed by a factor of 4 to 10, 
while also being more cost-effective in 
terms of recomputing shortest paths. 

- DR-APSP's routing approach 
based on the APSP algorithm may 
not be optimal for all network 
types and traffic patterns due to its 
limited versatility. Additionally, its 
computationally intensive dynamic 
routing algorithm demands 
significant processing power and 
memory, potentially compromising 
performance in large networks. 

Yi-Ren et. al. 
[45] 

OSPF and 
LL. 

- RL-Routing obtains higher rewards on 
all three network topologies. 

- RL-Routing minimizes the file 
transmission time on all three network 
topologies. 

- RL-Routing avoids congested paths. 
- Hosts re-transfer fewer packets with 

RL-Routing than with baseline 
solutions. 

Deploy RL-Routing in a real 
network environment and evaluate 
it on other topologies. 

Gururaj et.al. 
[46] 

SPT, ST, 
BAERA, 
and 
OBSTA 

- REMTC constructs an optimal, 
scalable, and stable multicast 
topology. 

- REMTC selects the trunk path based 
on the device count, unlike other 
methods that rely on optimization 
techniques. 

- REMTC's rerouting time is notably 
quicker than ST, taking only 20-25% 
of the time. This improved efficiency 
is due to the trunk path algorithm, 
which prioritizes common links to 
reach multicast participants. 

- REMTC's distinctive features 
contribute to reducing the alteration 
time during dynamic join and leave 
events. 

- Applying a machine learning-
based approach to predict optimal 
paths and adapt to changing 
network conditions. 

- The adaptation of REMTC for 
dynamic traffic in SDN requires 
the processing of real-time 
network data and the construction 
of multicast trees in real time. 
This can be computationally 
expensive, especially in large and 
complex networks, and may not 
scale well. 

Majda et.al. 
[50] 

No 
VQoSRR, 
VQoS-R and 
VQoS-RR 

- VQoS-RR increased SSIM quality 
values for SD and HD videos. 

- VQoSRR improved average MOS by 
36.0% for SD and 56% for HD. 

- Not covered the impact of 
network failures and on the 
performance of the VQoSRR 
model. 



Subjective MOS evaluations better-
reflected differences compared to 
objective SSIM when comparing 
results with the proposed VQoSRR. 

- DR-RA achieved the highest HD 
SSIM at 7 seconds and the best SD 
result at 5 seconds, suggesting longer 
intervals for HD rerouting. 

- DR-RA achieved high-quality videos 
with improved SSIM average values. 

- The experimental results are 
limited to a specific set of video 
durations. Further analysis is 
needed to assess the performance 
of the proposed model for long-
duration videos and different 
resolutions. 

- The integration of the proposed 
model with the multicast 
transmission is a promising 
direction for enhancing smart city 
tools and applications, 
particularly for surveillance 
systems in hospitals and civil 
defence organizations. 

- Extend the research to investigate 
the scalability of the proposed 
model in large-scale network 
environments. 

 
 

 

5) Conclusion and Future Directions 

In conclusion, Software-Defined Networks (SDN) have wrought a transformative impact on 
network management through the segregation of the control layer and forwarding devices, yielding 
centralized oversight and adaptable traffic control. This paper has highlighted the significance of 
Load Balancing & Resilient traffic and traffic optimization in the context of Traffic Routing within 
SDN. By means of a comprehensive evaluation and juxtaposition of scholarly discourse, a diverse 
array of techniques and resolutions for traffic routing within SDN has been explored. Nonetheless, 
it is paramount to recognize that the domain of SDN is characterized by perpetual evolution, 
ushering in novel challenges and prospects in tandem with the progress of SDN development. The 
establishment of standardized SDN components and the assimilation of protocols tailored to SDN 
constitute pivotal undertakings, indispensable for surmounting legacy network-related issues. 
Subsequent research ought to center around the control plane, endeavouring to conceive innovative 
controller solutions, which function as the linchpin of the SDN architecture. Mitigating the control 
plane's susceptibility as a solitary point of failure and effectuating robust security measures stand 
as imperative requisites. Additionally, the integration of high availability (HA) mechanisms and 
performance enhancement strategies to adhere to the stipulations of service level agreements 
(SLAs) and to efficaciously furnish services should be of paramount concern. In summation, this 
exposition furnishes a comprehensive survey of traffic routing methodologies within SDN. 
Nonetheless, the road ahead remains replete with imperatives encompassing standardization, 
control plane augmentation, fortification of security protocols, and optimization of performance. 
It is incumbent upon forthcoming research endeavours to address these challenges, in order to 
further advance the capabilities and reliability of SDN networks. 
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