
Kafrelsheikh Journal of Information Sciences ISSN (Online): 2535-1478, ISSN (Print): 2537-0677 Volume 5, Issue 1,

2025, PP. 1–25 Date of publication 3 April 2025

An Enhanced Model for Dijkstra Algorithm: Case Study Nearest

Hospital in Greater Cairo-Egypt

Hytham M. Ismail1, Mohamed El-Mekawy2, Mona Nasr3, and Mohamed Belal4.

1Faculty of Computers and Artificial Intelligence, Beni-Suef University, Egypt.

2Department of Computer and Systems Sciences, Stockholm University, Sweden.

3, 4 Faculty of Computers and Information, Helwan University, Egypt.

1hytham.mahmoud@fcis.bsu.edu.eg, 2moel@dsv.su.se, 3drmona_nasr@fci.helwan.edu.eg,
4dr.mohamedbelal@gmail.com.

ABSTRACT

The COVID-19 pandemic has increased the need for people to locate nearby healthcare

facilities quickly, especially in densely populated countries like Egypt, where transportation

networks are complex. The Dijkstra algorithm, commonly used to solve shortest path

problems, traditionally focuses on a single destination. An enhancement for existing Dijkstra

algorithm is required able to select the nearest location from multi-destinations. This study

introduces an enhanced version of the Dijkstra algorithm - Enhanced Dijkstra Shortest Path

Algorithm (EDSPA) - that accommodates multiple destination nodes by utilizing an endpoint

list. This improvement significantly reduces execution time, enabling quicker identification

of the nearest hospital and ensuring timely treatment for patients, particularly within the

critical "golden hour." The proposed algorithm is adaptable to various geographic area zones

with approximately the same execution time. This study provides the efficiency of the

proposed algorithm by implementing the enhanced and existing Dijkstra algorithms using

the same data sets and comparing the results.

Keywords: Shortest Path; Dijkstra’s algorithm; nearest hospital; QGIS; Enhanced Dijkstra

Algorithm

1. Introduction

The COVID-19 pandemic has highlighted the critical need for efficient health

infrastructure and timely access to medical facilities. One of the main challenges facing

health systems, especially in regions hit hard by the virus, is to ensure that patients, especially

those who need urgent care, can reach hospitals as quickly as possible [1]. Shortest path

algorithms are fundamental in fields as diverse as transport networks, communication

systems, robotics and logistics. These algorithms are used to find the optimal path between

two nodes in a graph, where nodes represent places (such as cities or hospitals) and edges

represent connections or routes between these places. In the context of the COVID-19

pandemic, shortest path algorithms have gained attention for their ability to optimize routes

mailto:hytham.mahmoud@fcis.bsu.edu.eg
mailto:moel@dsv.su.se
file:///F:/ME/PHD/my%20thesis/My%20Papers/Construct%20COVID-19%20Hospital/drmona_nasr@fci.helwan.edu.eg
file:///F:/ME/PHD/my%20thesis/My%20Papers/Construct%20COVID-19%20Hospital/dr.mohamedbelal@gmail.com

2

for ambulance, providing health care and transporting patients to hospitals. The shortest route

algorithms have emerged as a powerful tool to optimize routes and help individuals, medical

personnel or distribution systems to find the nearest hospital in real time, especially in times

of crisis such as pandemics [2]. There are many shortest path algorithms, Dijkstra’s

Algorithm, Bellman-Ford Algorithm [3], A* (A-star) Algorithm [4] and Floyd-Warshall

Algorithm [5] are the most well-known shortest path algorithms.

Dijkstra's algorithm, proposed by Edsger W. Dijkstra, is an algorithm used to find the

shortest path between nodes in a graph that can represent road networks [6]. Dijkstra's

algorithm is widely used in network analysis to determine the most efficient path between

two points in a graph [7]. This can be particularly useful for finding the fastest route to

hospitals in an emergency. In the case of COVID-19, where rapid medical intervention is

crucial, implementing algorithms can significantly improve the speed with which individuals

reach healthcare facilities [8]. By modeling cities or regions as graphs, where nodes represent

locations (including hospitals, clinics, and residential areas) and edges represent roads or

transportation routes, Dijkstra's algorithm can be used to calculate the shortest path from a

given location (such as a patient's home or ambulance station) to the nearest hospital.

Dijkstra's algorithm is considered the best algorithm to extract the shortest path for

non-negative weight [9]. The Dijkstra’s algorithm determines the least-cost path from a

source point to the destination [6]. The pseudocode of the Dijkstra’s algorithm is shown in

(Figure 1) [10]. It shows how the algorithm finds the minimum distance path for the given

start to the end point.

Figure 1 Pseudocode for Dijkstra’s algorithm [10]

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎(𝐺𝑟𝑎𝑝ℎ,𝑆𝑡𝑎𝑟𝑡,𝐸𝑛𝑑):

 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑣𝑒𝑟𝑡𝑒𝑥 𝑉 𝑖𝑛 𝑔𝑟𝑎𝑝ℎ: //initialize

 𝑑𝑖𝑠𝑡[𝑣]=𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦, 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠[𝑣]=𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑;

 𝑑𝑖𝑠𝑡[𝑠𝑡𝑎𝑟𝑡]=0;

 𝑄=𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝐺𝑟𝑎𝑝ℎ;

 𝑤ℎ𝑖𝑙𝑒 𝑄 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦:

 𝑢=𝑣𝑒𝑟𝑡𝑒𝑥 𝑖𝑛 𝑄 𝑤𝑖𝑡ℎ 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑑𝑖𝑠𝑡[];

 𝑖𝑓 𝑑𝑖𝑠𝑡[𝑢] = ∅: 𝑏𝑟𝑒𝑎𝑘;

 𝑖𝑓 𝑢= 𝑒𝑛𝑑: 𝑏𝑟𝑒𝑎𝑘;

 𝑟𝑒𝑚𝑜𝑣𝑒 𝑢 𝑓𝑟𝑜𝑚 𝑄;

 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡 𝑣 𝑜𝑓 𝑢:

 𝑎𝑙𝑡=𝑑𝑖𝑠𝑡[𝑢] + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑢,𝑣);

 𝑖𝑓 𝑎𝑙𝑡<𝑑𝑖𝑠𝑡[𝑣]:

 𝑑𝑖𝑠𝑡[𝑣]=𝑎𝑙𝑡, 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠[𝑣]=𝑢;

 // read the least distance path

 𝐸= 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒;

 𝑢=𝐸𝑛𝑑;

 𝑤ℎ𝑖𝑙𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 [𝑢] 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑:

 𝑖𝑛𝑠𝑒𝑟𝑡 𝑢 𝑎𝑡 𝑡ℎ𝑒 𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 𝑜𝑓 𝐸, 𝑢=𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠[𝑢];

 𝑟𝑒𝑡𝑢𝑟𝑛 𝐸

3

The complexity of Dijkstra's algorithm is as follows:

Let graph G= (V, E); where V represents vertices in the graph and E represents the edges

of the graph. It takes O(V) time to build the initial priority queue of vertices V [6]. Each of

the following priority queue operations takes O (log q) time where q is the current queue size.

Each vertex is dequeued exactly once, after taking the least-cost path from the source vertex.

After dequeuing, each neighbor v of vertex u is tested to see if the path from the source to v

via u has a lower cost than that of the current path from the source to v. If a lower cost path

is obtained through u, then the cost of the path to v is reduced and the priority of the vertex

is changed in the queue. Thus, the path improvement test is performed a total of O (E) times

with a worst-case time of O (log V) to update the vertex priority for each test. Therefore, the

algorithm runs in time O (E log V) [11].

𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝑂(𝐸 𝑙𝑜𝑔 𝑉); equ. 1

where E and V are the graph edges and vertices.

The first algorithm created by Dijkstra was designed to find the shortest route between

two given nodes, but a more widespread variation can find the shortest paths from one source

point to all other nodes [12]. (Huang, Yi, & Shi, 2013) provided improvement for Dijkstra

algorithm incorporates a weight constraint function to solve data structure storage errors,

such as large space and availability [13]. (Chadha & Garg, 2019) implemented various

algorithms, Dijkstra, Bidirectional Dijkstra and A* algorithms, to calculate the optimal path

between two nodes [14]. (Das, Ojha, Kramsapi, Baruah, & Dutta, 2019) performed proper

analysis of the present road network, geo dataset of vertices and edges was created. Then

origin and destination vertices were selected to extract the shortest route using Dijkstra

algorithm [15]. Dijkstra's algorithm was applied to extract the shortest path to all nearest

hospitals to an emergency location in case of an accident, then adapted a fuzzy logic

algorithm to search among nearest hospitals based on many other factors i.e. the severity of

the accident, the distance, the availability of medical equipment and etc. by (Gabriel, Lolade,

Durodola, & Orimoloye, 2019) [2]. Although (Tang, Zhou, Geng, & Sun, 2019) also use

Dijkstra algorithm on emergency rescue, the optimal route extracted from emergency rescue

point to accident point [9]. Dijkstra algorithm also used in tourist applications, (Anam &

Yunus, 2019) implement Android GIS-based information system to find the nearest tourist

places [16]. In criminal cases, also extraction of shortest path is required, (Abd Al-Munaf,

Abdulahmeed, & Hussein, 2020) use QGIS and the Dijkstra algorithm to extract the shortest

path between the accident places and the nearest relevant authorities’ location. [17]. Shortest

path algorithms not applicable for road networks only, (Cadieux, Kalacska, Coomes, Tanaka,

& Takasaki, 2020) applied Dijkstra algorithm on river networks [18]. (Al Bager A. & Al

Samani A., 2020) explore comparison between Dijkstra and Bellfam-Ford algorithms, which

proved Dijkstra is more efficient to extract shortest path than Bellfam-Ford algorithm [19].

4

Planning for Robot’s geomagnetic navigation also demand applied of Dijkstra algorithm

[20]. (Bhardwaj 2021) integrate vehicle route problems with Dijkstra algorithm [21]. Dijkstra

algorithm also, used in optimizing route for waste collection by (Sahu, Sharma, Sharma,

Choudhury, & Dewangan, 2023) [22]. An enhancement to Dijkstra algorithm was applied by

node combination to reduce the memory usage as explored by (Tiong, Panganiban, Blanco,

Regala, & Cortez, 2022) [23].

This study provides enhancement of Dijkstra's algorithm to find the nearest hospital

during the COVID-19 pandemic from available hospitals within specific zone. Also, this

article claims that enhancement algorithm requires less execution time to extract the shortest

path than existing one.

2. Materials and Methods

2.1. Proposed Architecture and Methodologies

This study aims to provide a model for Enhanced Dijkstra Shortest Path Algorithm

(EDSPA) for the sake of discovering the nearest hospital and extract the shortest path to this

hospital in Greater Cairo. To provide the patient with the shortest path from the patient’s

current location to the nearest hospital site, a method with four analysis stages is proposed

(see Figure 2).

In the first stage, Data Preparation, patient’s current location, road network, and

available hospitals are identified.

Then in the next stage, nearest hospitals are determined by getting all hospitals within

patient location range from the previous stage, on exists hospitals map layers, using a buffer

approach in the Quantum Geographic Information System (QGIS) open-source tool. The

main goal of this stage is to identify the N (specified minimum number) number of nearest

hospitals. First, by using buffer method, get all hospitals within a range of one kilometer from

the patient location. If the number of hospitals within one kilometer range is less than the

specified N, then increase range area by one kilometer and repeat buffering method. Finally,

the nearest hospitals’ location map layer is generated.

In the third stage, the proposed Enhanced Dijkstra Shortest Path Algorithm (EDSPA)

and existing Dijkstra Algorithm are used to specify the nearest hospital and extract the

shortest path from patient location to this hospital location. The following two sub-sections

are used to explore how to use current and enhanced Dijkstra Shortest Path Algorithms. The

proposed and existing algorithms are applied on nearest hospitals’ location, patient’s location

and road network layers using Python language and QGIS tool.

Finally, in the last stage, the GIS map contains patient’s location, the nearest hospital’s

location and the shortest path between them is provided to patient to arrive at a suitable time.

5

2.1.1. Dijkstra Shortest Path Algorithm

According to the previous discussion, the existed Dijkstra Algorithm can be used to

extract the shortest path between two nodes as shown in (Figure 1). So, to extract the overall

shortest path the Dijkstra algorithm should be executed for each available hospital.

Figure 2 Methodology Flowchart

As shown in (Figure 3), to extract the overall shortest path, the Dijkstra algorithm

extracts the shortest path between patient location and first hospital from nearest hospitals

list. Then, the extraction shortest path is added to the shortest path list. Repeating these

Identification of study

area infrastructure

Road network

Patient location

Available hospitals’

locations

Determination nearest

hospitals list

Nearest hospitals’

 locations

Show Shortest path and

the nearest hospital

location on map

Extraction of shortest path

Nearest hospital’

location

Shortest path to

 the nearest hospital

1

2

3

4

6

procedures for each hospital from the nearest hospitals list is required. Finally, comparing

among the shortest path list is applied to get the overall shortest path and the nearest hospital

associated to this shortest path.

Figure 3 Extraction shortest path using existed Dijkstra Algorithm

By using Dijkstra algorithm complexity as shown in (equ. 1) the complexity of the

above model is:

 3

Patient location Nearest hospitals’ location

Determination of first hospital’s

location

Extract shortest path by

existed Dijkstra algorithm

Shortest path of the

current hospital

Add current

shortest path

to shortest paths list

Shortest paths list

Last hospital in

nearest

hospitals list?

Determination of next

hospital’s location

No

Determination of overall

shortest path

Yes

Nearest hospital’ location Shortest path to the nearest hospital

7

 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑢𝑠𝑖𝑛𝑔 𝑒𝑥𝑖𝑠𝑡𝑠 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 = 𝑂(𝑁(𝐸 𝑙𝑜𝑔 𝑉)); equ. 2

where E, V and N are the graph edges and vertices and the number of nearest hospitals.

This complexity is calculated by multiplying Dijkstra complexity with number of

nearest hospitals, because the above model executes Dijkstra algorithm multiple times

according to the number of hospitals.

2.1.2. Enhanced Dijkstra Shortest Path Algorithm (EDSPA)

Figure 4 Pseudocode for Enhanced Dijkstra’s algorithm

Figure 5 Extraction shortest path using Enhanced Dijkstra Algorithm

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 EDSPA (𝐺𝑟𝑎𝑝ℎ,𝑆𝑡𝑎𝑟𝑡,𝐸𝑛𝑑List):

 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑣𝑒𝑟𝑡𝑒𝑥 𝑉 𝑖𝑛 𝑔𝑟𝑎𝑝ℎ: //initialize

 𝑑𝑖𝑠𝑡[𝑣]=𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦, 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠[𝑣]=𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑;

 𝑑𝑖𝑠𝑡[𝑠𝑡𝑎𝑟𝑡]=0;

 𝑄=𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝐺𝑟𝑎𝑝ℎ;

 𝑤ℎ𝑖𝑙𝑒 𝑄 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦:

 𝑢=𝑣𝑒𝑟𝑡𝑒𝑥 𝑖𝑛 𝑄 𝑤𝑖𝑡ℎ 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑑𝑖𝑠𝑡[];

 𝑖𝑓 𝑑𝑖𝑠𝑡[𝑢] = ∅: 𝑏𝑟𝑒𝑎𝑘;

 if u in EndList: break;

 𝑟𝑒𝑚𝑜𝑣𝑒 𝑢 𝑓𝑟𝑜𝑚 𝑄;

 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡 𝑣 𝑜𝑓 𝑢:

 𝑎𝑙𝑡=𝑑𝑖𝑠𝑡[𝑢] + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑢,𝑣);

 𝑖𝑓 𝑎𝑙𝑡<𝑑𝑖𝑠𝑡[𝑣]:

 𝑑𝑖𝑠𝑡[𝑣]=𝑎𝑙𝑡, 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠[𝑣]=𝑢;

 // read the least distance path

 𝐸= 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒;

 u=vertex in EndList with minimum dist;

 𝑤ℎ𝑖𝑙𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 [𝑢] 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑:

 𝑖𝑛𝑠𝑒𝑟𝑡 𝑢 𝑎𝑡 𝑡ℎ𝑒 𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 𝑜𝑓 𝐸, 𝑢=𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠[𝑢];

 𝑟𝑒𝑡𝑢𝑟𝑛 𝐸

 3

Patient location Nearest hospitals’ locations

Extract shortest path by

Enhanced Dijkstra algorithm

Nearest hospital’ location Shortest path to the nearest hospital

8

As shown in (Figure 4) the iteration of nearest hospital list is executed within the while

loop of vertices queue, so the number of vertices is multiplied by the number of nearest

hospitals in complexity calculation as shown in (equ. 3). Also, because the proposed model

executes Enhanced Dijkstra algorithm only once to get the overall shortest path, there is no

need to multiple the algorithm complexity with number of hospitals to calculate the model

complexity.

𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑢𝑠𝑖𝑛𝑔 𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎 = 𝑂(𝐸 𝑙𝑜𝑔(𝑁𝑉)); equ. 3

where E, V and N are the graph edges and vertices and the number of nearest hospitals.

Comparing (equ. 2 and equ. 3), 𝑂(𝐸 log(𝑁𝑉)) < 𝑂(N(𝐸 log 𝑉)), shows execution time of

extraction shortest path using enhanced Dijkstra algorithm is dramatically less than execution

time of extraction shortest path using existed Dijkstra algorithm.

2.2. Problem Definition and Case Study

In the context of epidemics, in critical health conditions such as heart disease, it is very

important to choose the nearest hospital with the shortest path. Dijkstra's algorithm can take

the shortest path between two points or all the shortest paths for all the given nodes. Using

the shortest path between two points, the algorithm needs to be repeated for each available

hospital, and the processing time is often too long. Also, it takes a long time to take all the

shortest paths. This study proposes Enhanced Dijkstra Shortest Path Algorithm (EDSPA) to

determine the nearest hospital and take the shortest path between the patient and the nearest

hospital with the least processing time.

2.2.1. Study area

The Greater Cairo Area is the largest metropolitan area in Egypt (Chase, 2020), the

largest urban area in Africa, the Middle East, and the Arab world, and is the sixth-largest

metropolitan area in the world. It consists of all cities in the Cairo Governorate as well as

Giza, Sheikh Zayed City in the Giza Governorate, and Shubra El Khima and Obour in the

Qalyubia Governorate with a total estimated population of 20,296,000 people, an area of

2,010 km2, and a density of 10,099/km2 (Chase, 2020). It is allocated to 30°03'N and

31°22'E.

In addition to being the largest metropolitan area in Egypt, 20% of Egyptians

(110,909,103 persons) live in Cairo. Furthermore, Greater Cairo has a complex collection of

constraints and criteria. Because of this, Greater Cairo is considered a suitable case study

area to implement the proposed methodology.

9

Figure 6 Greater Cairo Study Area

2.2.2. Data Source

OpenStreetMap is considered as a data source of vector layers which are used in this

study. OpenStreetMap is a free, editable map of the whole world that is being built by

volunteers largely from scratch and released with an open content [24].

 Data Source: OpenStreetMap

 Coordinate Reference System (CRS)

 Name: EPSG:4326 - WGS 84

 Units: Geographic (uses latitude and longitude for coordinates)

 Accuracy: Based on World Geodetic System 1984 ensemble (EPSG:6326), which has

a limited accuracy of, at best, two meters.

 Extent:

o 26.590, 27.197: 32.620, 31.116 for Area of Study map layers

o 31.197, 30.016: 31.283, 30.071 for Selected Point Area map layers

 Scale:

o 1:1400000 for Area of Study map layers

o 1: 22393 for Selected Point Area map layers

 Date: updated to January 2021

 Datasets in vector layers and its description:

10

o Highway: line vector layer, contains different types of streets and roads

(motorway, primary, secondary, and track).

The data sets which are used in this study are organized, managed, and validated by

NextGIS [25].

Existing hospital: point vector layer, contains different types of hospitals (private,

public, and international).

2.3. Enhanced Dijkstra Shortest Path Algorithm (EDSPA) Implementation

In this section, the proposed methodology is implemented in our case study,

represented by shortest path for the nearest hospital in Greater Cairo on Egypt. The following

sub-sections explain the implementation of the four stages of proposed EDSPA methodology.

2.3.1. Data Preparation

In this sub-section, we determinate vector map layer for the study area using QGIS

selection tool. The existing available hospitals layer, in the study area, were also established

using QGIS intersection tool between all available hospitals and study area layers as shown

in (Figure 7).

We then determined the greater Cairo Road network by extracting it from Egypt road

network using study area vector layer as shown in (Figure 8).

Finally, we identified the patient location by selecting a random point within the study

area and specifying this point coordinate ,30.04711 latitude and 31.23902 longitude, as

shown in (Figure 9).

Zooming in for patient location and changing the extent of the map layer from 26.590,

27.197: 32.620, 31.116 to 31.197, 30.016: 31.283, 30.071, also the scale is raised from 1:

1400000 to 1: 22393 as shown in (Figure 9).

11

Figure 7 Existed hospitals vector layer

Figure 8 Heighway vector layer

12

Figure 9 Zoom in for Selected Source Point Area

2.3.2. Nearest Hospitals Determination

This sub-section explains the second step on the proposed methodology, available

nearest hospital determination. The nearest hospitals to the scene of the patient are identified

by the buffer. Since the map is constructed with a projected coordinate system, Euclidean

buffers are best suited to give the boundary accurately. Distance can be specified in linear

units such as meters and kilometers and applied to the selected function. To find the nearest

hospitals, a buffer distance of 1 km is first applied to check availability as shown in (Figure

10). If hospitals are not available in a buffer of 1 km, then the distance is increased by the

radius of 1 km to get at least 3 hospitals [26]. The green points in Figure 10 represents the

buffer zone of 2 km created around the patient location to identify the nearest hospital.

To study the effect of increasing the number of nearest hospitals on the existed and

proposed algorithms, we increase buffer zone to 3 km and reidentify the nearest hospitals as

shown in (Figure 9), this new buffer zone increase the nearest hospitals number from 4

hospitals to 15 hospitals as shown in (Figure 10).

13

Figure 10 Nearest Hospitals

2.3.3. Shortest Path Extraction

Dijkstra's algorithm calculates the shortest path from a source node to all other nodes

in the graph. However, it does not explicitly store the path, but only the minimum distances

between the source and each node. Extracting the actual shortest path from the calculated

results requires some additional steps. The simplest way to derive the shortest path is to keep

the predecessor nodes while running Dijkstra's algorithm. On this study, there are multiple

target nodes (available hospitals), so we first extract the shortest path for each target node

then compare among these paths to get the overall shortest path, using classic Dijkstra

algorithm. While by using the proposed enhanced Dijkstra algorithm, we extract directly the

overall shortest path without compromising among multiple target nodes. In the following

sub-sections, the shortest path is extracted using classic and enhanced Dijkstra algorithm

within 2 kilometers buffer zone from patient location, 4 hospitals available.

2.3.3.1. Existing Dijkstra Algorithm for 2 km buffer zone nearest hospitals

The existing Dijkstra Algorithm extracts the shortest path between one start and one

target nodes. Also, existing Dijkstra can extract all shortest paths from source to all other

nodes. The area of study (Grater Cairo Road network) consists of 1881161 vertices nodes,

which makes extracting all the shortest paths the worst option. So, when applying the existing

algorithm, the shortest path for each available hospital is extracted separately then comparing

among them to show the nearest hospital.

14

For extracting the shortest path from patient location to “Kasr Al Ainy Gynecology

Hospital” there are 12802 vertices are examined by Dijkstra Algorithm as shown in (Figure

11).

Figure 11 Shortest path to Kasr Al Ainy Gynecology Hospital using Dijkstra Algorithm

Figure 12 Shortest path to Ahmed Maher Teaching Hospital using Dijkstra Algorithm

15

For “Ahmed Maher Teaching Hospital” Dijkstra Algorithm pass with 5923 vertices to

extract shortest path from patient location to this hospital as shown in (Figure 12)

Figure 13 Shortest path to ElGomhoria Teaching Hospital using Dijkstra Algorithm

For extracting the shortest path from patient location to “ElGomhoria Teaching

Hospital” there are 4702 vertices are examined by Dijkstra Algorithm as shown in (Figure

13)

The last available hospital within 2 kilometer “Abo El Reesh Pediatric Hospital”

demands 8791 visited vertices to extract the shortest path from patient location to this as

shown in (Figure 14).

As the previous discussion the total number of vertices need to checked using the

existing Dijkstra algorithm is 32218=12802 + 5923 + 4702 + 8791 for 2 kilometers buffer zone.

𝐸𝑥𝑖𝑚𝑖𝑛𝑒𝑑 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 = ∑ 𝑣𝑛𝑖
𝑛
𝑖=1 equ. 4

Finally, we compare among the extracted shortest paths to extract the overall shortest

path as shown in (Figure 15).

As shown in (Figure 20), the nearest hospital is “ElGomhoria Teaching Hospital” with

path length 1.55 kilometers, and extraction time 161 milliseconds.

16

Figure 14 Shortest path to Abo El Reesh Pediatric Hospital using Dijkstra Algorithm

Figure 15 Shortest Paths within 2 kilometers buffer using Dijkstra Algorithm

2.3.3.2. Enhanced Dijkstra Algorithm (EDSPA) for 2 km buffer zone nearest hospitals

The proposed EDSPA algorithm extracts the overall shortest path directly, that is

because the proposed algorithm works on multiple destinations node. The proposed

17

algorithm demands to visit only 4702 vertices as shown in (Figure 16) to extract the shortest

path for the nearest hospital.

As shown in (Figure 20), the nearest hospital is “ElGomhoria Teaching Hospital” with

path length 1.55 kilometers, and extraction time 26 milliseconds.

According to the previous sub-sections, although the existed and proposed algorithms

get the same results, the proposed algorithm execution time is dramatically shorter than the

existing algorithm, proposed algorithm saves 86% of execution time.

Figure 16 Visited paths within 2 kilometers buffer using EDSPA Dijkstra Algorithm

For study how the scalability of buffer zone and available hospitals effects on shortest

path extraction time, we increase buffer zone to 3 kilometers with 15 available hospitals.

2.3.3.3. Existing Dijkstra Algorithm for 3 km buffer zone nearest hospitals

For extracting all shortest paths from patient location to the nearest hospital from 15

available hospitals located within 3 kilometers buffer zone there are 310964 vertices

examined by Dijkstra Algorithm as shown in (Figure 17).

Then a comparison among these paths is applied to extract the overall shortest path as

shown in (Figure 18).

As shown in (Figure 20), the nearest hospital is “ElGomhoria Teaching Hospital” with

path length 1.55 kilometers, and extraction time 1726 milliseconds (1.726 second).

18

Figure 17 Visited paths within 3 kilometers buffer using Dijkstra Algorithm

Figure 18 Shortest paths within 3 kilometers buffer using Dijkstra Algorithm

2.3.3.4. Enhanced Dijkstra Algorithm (EDSPA) for 3 km buffer zone nearest hospitals

For extracting the overall shortest path from patient location to the nearest hospital

from 15 available hospitals located within 3 kilometers buffer zone there are 4702 vertices

examined by the proposed EDSPA algorithm as shown in (Figure 19).

19

As shown in (Figure 20), the nearest hospital is “ElGomhoria Teaching Hospital” with

path length 1.55 kilometers, and extraction time 31 milliseconds.

Figure 19 Visited paths within 3 kilometers buffer using EDSPA Dijkstra Algorithm

3. Results and Discussion

According to the previous two sub-sections, although the existed and proposed

algorithms get the same results, the proposed algorithm execution time is dramatically shorter

than the existing algorithm, proposed algorithm saves 98% of execution time.

Also, by comparing results of applying the same algorithm with different number of

available hospitals, Dijkstra algorithm requires multiple execution time, approximately 1500

milliseconds, for extra available hospitals. While the proposed algorithm requires slightly

more time, 5 milliseconds, for extra available hospitals.

According to the above discussion and as comparison in (Table 1), both existed and

enhanced algorithms extracted the same shortest path for the same nearest hospital. Although,

the existing algorithm requires longer time than enhanced algorithm, especially when the

number of available hospitals is increased. This agrees with the complexity of each algorithm.

For the enhanced algorithm, the number of vertices visited to extract the shortest path is the

same even though the number of available hospitals is increased. On the other hand, applying

the existing algorithm requires to increase the number of visited vertices according to the

number of available hospitals.

20

Figure 20 Shortest path to Nearest Hospital

Table 1 Comparison between existed and enhanced Dijkstra Algorithms

 Existing Dijkstra Algorithm Enhanced Dijkstra Algorithm

2 km. zone 3 km. zone 2 km. zone 3 km. zone

Complexity 𝑂(N(𝐸 𝑙𝑜𝑔 𝑉)) 𝑂(𝐸 𝑙𝑜𝑔(𝑁𝑉))

Available Hospitals 4 15 4 15

Visited vertices 32218 310964 4702 4702

Execution Time 161

milliseconds

1725

milliseconds

26

milliseconds

31 milliseconds

Shortest Distance 1.55 kilometers

Nearest hospital ElGomhoria Teaching Hospital

Another patient location is reidentified with coordinate 30.04711 latitude and 31.23902

longitude.

Table 2 Comparison between existed and enhanced Dijkstra Algorithms with another patient

location

 Existing Dijkstra Algorithm Enhanced Dijkstra Algorithm

2 km. zone 3 km. zone 2 km. zone 3 km. zone

Complexity 𝑂(N(𝐸 𝑙𝑜𝑔 𝑉)) 𝑂(𝐸 𝑙𝑜𝑔(𝑁𝑉))

Available Hospitals 8 16 8 16

Visited vertices 50915 180173 849 849

Execution Time 282 milliseconds 980

milliseconds

5 milliseconds 6

milliseconds

Shortest Distance 0. 679 kilometers

Nearest hospital Maahad El Qalb

21

According to the comparison in (Table 2), which represents implementation results of

execution both existed and enhanced algorithms, the extracted shortest path for the nearest

hospital is same. Comparing Table 1 and Table 2 provides that enhanced algorithm execution

time depends mainly on distance of the overall shortest path, while existing algorithm

depends on both distance of the overall shortest path and the number of available hospitals.

In relation to the previous research, this study fills the gap found in previous studies by

extracting the shortest path between one source location and the nearest destination from a

list of locations. The enhanced Dijkstra algorithm is provided in this study to be capable of

extracting the shortest path for nearest location without extracting paths for other available

locations. The previous research provided improvements for Dijkstra algorithm within two

models, the shortest path between one source and one destination locations or all other

locations.

(Gabriel, Lolade, Durodola, & Orimoloye, 2019) which is the most study common to

our study, used Dijkstra algorithm to extract the shortest path for all nearest hospitals to the

accident location then used Fuzzy logic to recommend suitable hospitals out of list of nearest

hospitals [2]. Because of using different datasets, to compare the shortest path time

extracting, the current study uses Dijkstra algorithm for extracting the shortest path for all

nearest hospitals. Then the enhanced algorithm is applied to extract the shortest path using

the same patient location and available hospitals list. The compassion results in Table 1 and

Table 2 show that the enhanced algorithm is significantly reduce the shortest path extracting

time, and also extracting time for enhanced algorithm depends on the overall shortest path,

and does not depends on the number of nearest hospitals. When there are 4 hospitals in the

nearest hospital list the enhanced algorithm extracts the shortest path within 26 milliseconds

by visiting 4702 intermediate vertices, while extracting the shortest path for all nearest

hospitals requires 161 milliseconds and visiting 50915 intermediate vertices. By changing

the patient location and with 16 hospitals in the nearest hospital list the enhanced algorithm

extracts the shortest path within 6 milliseconds by visiting 849 intermediate vertices, while

extracting the shortest path for all nearest hospitals requires 980 milliseconds and visiting

180173 intermediate vertices.

4. Conclusion

In conclusion, driving the shortest path to the nearest hospital plays a vital role in

improving healthcare delivery, especially in pandemic and emergency situations where time

is of the essence. By using advanced path-finding algorithms, such as Dijkstra, we can

accurately calculate the most efficient route for a patient to reach a healthcare facility. In

relation to the previous research, only two models of Dijkstra algorithm were applied in the

previous studies, start to end nodes and start to all other nodes. Start to end nodes model is

used to extract the shortest path between the start and the end node only. Although, starting

22

node to all other nodes is used to extract all shortest paths between the start and each other

nodes on road network. According to this research, extracting the overall shortest path for all

available hospitals is required. Repeating starting to end node Dijkstra algorithm model is

used to extract all shortest paths between the patient location and the available hospitals.

Then comparing among these shortest paths is applied to extract the overall shortest path.

Although this method is effective, it requires long execution time especially when increasing

the number of available hospitals, 1726 milliseconds for 15 available hospitals. This study

fills the gap found in previous studies by enhancing the Dijkstra algorithm to be able deal

with single start and specific target nodes list. The proposed (EDSPA) model is focused on

the target nodes list instead of single target node, which leads to dramatically decreasing the

execution time. By using the proposed model, the same shortest path from the classic Dijkstra

algorithm is extracted with saving more than 85% of execution time, 31 milliseconds for 15

available hospitals. In this study, we successfully decrease the extracting time of deriving

the shortest path to the nearest hospital using enhanced Dijkstra algorithm. Saving this

execution time enables us to identify the most optimal routes, ensuring that people can reach

medical facilities as quickly as possible in the event of an emergency. The ability to decrease

the time of extracting the shortest path not only improves access to healthcare, but also plays

a critical role in optimizing emergency response systems, potentially saving lives by reducing

travel times. For patients, especially those suffering from medical emergencies, rapid access

to nearby hospitals can mean the difference between life and death. In conclusion, driving

the shortest route to the nearest hospital represents not only a technical achievement in terms

of algorithmic design, but also an important contribution to public health and safety. By

continuously improving these systems, we can provide faster and more reliable access to

emergency care, improving health outcomes, and potentially saving lives.

In future studies, the integration of real-time data (such as current traffic flow, road

closures, and weather conditions) will improve accuracy and adaptability. This will enable

users to receive up-to-date information about the best routes available, adjusting for

unexpected delays or obstacles. Other factors, such as hospital availability, capacity and

specialization, ensuring that patients are not only directed to the nearest hospital, but also to

the one that best complements their specific needs, can be included in future studies. Future

improvements may include machine learning-based models that predict traffic conditions and

hospital availability, as well as advanced geographic information systems (GIS) that include

factors such as road quality, accident hotspots, or weather conditions. In addition, the

integration of multimodal transportation options (such as public transportation or air

ambulances) can also optimize the routing system in urban and rural areas.

References

[1] M. Yazdani and M. Haghani, "Optimisation-based integrated decision model for

ambulance routing in response to pandemic outbreaks," Progress in Disaster Science,

vol. 18, 2023.

23

[2] T. Gabriel, B. Lolade, Durodola and S. M. Orimoloye, "Shortest Route Analysis for

Road Accident Emergency using Dijkstra Algorithm and Fuzzy Logic," International

Journal of Computer Science and Mobile Computing, vol. 8, no. 12, pp. 64-73, 2019.

[3] R. Bellman, "ON A ROUTING PROBLEM," Quarterly of Applied Mathematics, vol.

16, pp. 87-90, 1958.

[4] P. E. Hart, N. J. Nilsson and B. Raphael, "A Formal Basis for the Heuristic

Determination of Minimum Cost Paths," IEEE Transactions on Systems Science and

Cybernetics, vol. 4, no. 2, pp. 100-107, 1968.

[5] R. W. Floyd, "Algorithm 97: Shortest path," Commun. ACM, vol. 5, 1962.

[6] E. Dijkstra, "A note on two problems in connexion with graphs," Numerische

Mathematik, vol. 1, no. 1, pp. 269 - 271, 1959.

[7] D. Fan and P. Shi, "Improvement of Dijkstra's algorithm and its application in route

planning," in Seventh International Conference on Fuzzy Systems and Knowledge

Discovery, 2010.

[8] Jason, M. Siever, A. Valentino, K. M. Suryaningrum and R. Yunanda, "Dijkstra's

algorithm to find the nearest vaccine location," Procedia Computer Science, vol. 216,

pp. 5-12, 2023.

[9] Z. Tang, S. Zhou, B. Geng and J. Sun, "Research on Railway Emergency Rescue

Path Selection Based on GIS," in International Conference on Oil & Gas Engineering

and Geological Science, 2019.

[10] M. Sushma and V. Reddy, "Finding an optimal path with hospital information system

using GIS-based Network analysis," WSEAS Transations on Information Science and

Applications, vol. 18, 2021.

[11] M. Barbehenn, "A note on the complexity of Dijkstra's algorithm for graphs with

weighted vertices," IEEE Transactions on Computers, vol. 47, no. 2, 1998.

[12] R. Nasiboglu, "Dijkstra solution algorithm considering fuzzy accessibility degree for

patch optimization problem," Applied Soft Computing, vol. 130, 2022.

[13] Y. Huang, Q. Yi and M. Shi, "An Improved Dijkstra Shortest Path Algorithm," in

Proceedings of the 2nd International Conference on Computer Science and

Electronics Engineering, China, 2013.

[14] C. Chadha and S. Garg, "Shortest Path Analysis on Geospatial Data Using

PgRouting," in International Conference on Innovative Computing and

Communications, Singapore, 2019.

[15] D. Das, A. K. Ojha, H. Kramsapi, P. P. Baruah and M. K. Dutta, "Road network

analysis of Guwahati city using GIS," SN Applied Sciences, vol. 1, no. 8, 2019.

24

[16] K. Anam and M. Yunus, "Android GIS-Based Information System Applying Dijkstra

Algorithm For Finding The Nearest Tourist Spots in Sumenep District," International

Journal of Computer, Network Security and Information System, vol. 1, no. 1, pp. 1-5,

2019.

[17] A. Y. Abd Al-Munaf, A. A. Abdulahmeed and K. Q. Hussein, "Accessing the Best

Path Using Dijkstra Algorithm & GIS for Mobile Cloud Systems," in 3rd International

Conference on Engineering Technology and its Applications, 2020.

[18] N. Cadieux, M. Kalacska, O. T. Coomes, M. Tanaka and Y. Takasaki, "A Python

Algorithm for Shortest-Path River Network Distance Calculations Considering River

Flow Direction," Data, vol. 5, no. 1, 2020.

[19] A. B. Al Bager A. and A. Al Samani A., "Using GIS to Determine the Shortest

Distance in the Searching Engines," International Journal of Advance Research in

Computer Science and Management Studies, vol. 8, no. 9, pp. 1-7, 2020.

[20] Y. Xu, G. Guan, Q. Song, C. Jiang and L. Wang, "Heuristic and random search

algorithm in optimization of route planning for Robot’s geomagnetic navigation,"

Computer Communications, vol. 154, pp. 12-17, 2020.

[21] H. Bhardwaj, "Integration of A Vehicle Route Problem with A Geographical

Information System," International Research Journal of Modernization in

Engineering Technology and Science, vol. 3, no. 12.

[22] M. Sahu, P. Sharma, H. K. Sharma, T. Choudhury and B. K. Dewangan, "Route

Optimization for Waste Collection," in Emerging Technologies in Data Mining and

Information Security, Singapore, Springer Nature Singapore, 2023, pp. 605-613.

[23] A. Z. Tiong, C. J. Panganiban, M. C. Blanco, R. Regala and D. M. Cortez,

"Enhancement of Dijkstra Algorithm for Finding Optimal Path," vol. 102, no. 1, pp.

164-170, 2022.

[24] M. S. N. Fitri, O. Marena, O. A. Hisam, M. Y. M. Hafiz and A. K. N. Izzati,

"Suitability of Open Street Map (OSM) for 1:50000 Topographic Map," in 8th

International Conference on Geomatics and Geospatial Technology, 2022.

[25] "Spatial data for your project," 1 January 2021. [Online]. Available:

https://nextgis.com/datasets/.

[26] A. J. Mahariba, R. A. Uthra and a. R. G. Brunet, "Estimation of Shortest Route with

Minimum Travel Time Using GIS and MSSTT Algorithm," in Lecture Notes in Civil

Engineering, vol. 191, Springer, Singapore, 2022.

